DESIGN FORREUSE PRIMER

15 SUCCESSFUL REUSE PROJECTS WITHIN DIFFERENT SECTORS (M) IN-DEPTH. RESEARCHED AND . (M) PUBLIC ARCHITECTURE

VERSION 1.1 PUBLIC ARCHITECTURE

Acknowledgements _____ Introduction _____

CIVIC Portola Valley Town Center Vancouver Materials Testing Facility —

EDUCATION Chartwell School — Sidwell Friends Middle School — University Of Texas School Of Nursing an Student Community Center —

HOUSING Benny Farm Eastern Sierra House

OFFICE Phillips Eco-Enterprise Center Alberici Corporate Headquarters

RETAIL Mountain Equipment Co-Op Ottawa & W

INTERPRETIVE CENTER Operation Comeback 5200 Dauphine Str Omega Center for Sustainable Living —

CULTURAL/RELIGIOUS Jewish Reconstructionist Congregation -Long Center for the Performing Arts —

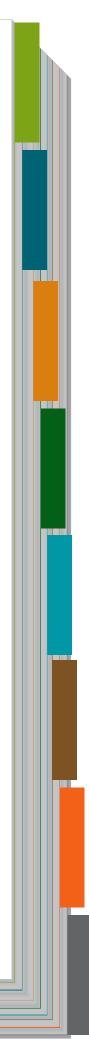
LEARN MORE

Glossary Resources Index

© 2010 Public Architecture. All rights reserved. The photographs in this book are used with permission and their authors retain all rights in their possession. Designed by Studio Lin www.studiolin.org

		1 3
		- 34 17 29
	35 -	- 64 39 51
nd		59
	65 -	69
	85 —	
Vinnipeg ——	103–	
nnipeg	117—	121
	137—	141
	159—	160 162

ACKNOWLEDGEMENTS


This publication would not have been possible without the great many people who generously contributed time and energy or lent support. This includes current and past members of the Public Architecture staff: Brad Leibin, Cali Pfaff, John Peterson, Nick McClintock, Amy Ress, Mia Scharphie, Evelyn Lee, Milton Marks, and John Cary.

A team of dedicated volunteers were instrumental to doing the research, developing the case studies, and facilitating outreach. Grant Alexander, Virginia Alexander, Mary Casper, Roselle Curwen, Barbara Franzoia, Trudy Garber, Taj Hanson, Julia Howe, Annie Koo, Shanti Levy, Nicole Melas, Tammy Ng, Ashley Turner, and Liz Westbrook have contributed many long hours throughout the two-year development of this project.

A knowledgeable team of advisors have also provided their invaluable expertise to this research. That team includes co-Principal Investigator Brad Guy, now of Catholic University, as well as advisory team members Gregory Dick of the California Integrated Waste Management Board, Timonie Hood of US EPA Region 9, Mark Palmer of San Francisco Department of the Environment, and Meri Soll and Wes Sullens, both of StopWaste.Org.

Editor Jennifer Roberts provided invaluable assistance in helping to bring an engaging tone to the case studies. We are grateful to the graphic vision of Alex Lin/Studio Lin, for adding a visual richness to the stories.

The U.S. Green Building Council (USGBC) provided the generous funding that made the Design for Reuse Primer possible. We also thank the USGBC research program staff for providing additional resources and support over the course of the project. Thanks as well to the research grant's technical review team; they have been a great sounding board throughout.

Finally, we would like to extend our deepest gratitude to all the individuals and organizations involved with the case study projects who generously took the time to talk or work with our research team. Your stories and insights are the foundation of this publication. We feel honored to be able to share these signature examples of reuse with a wider public.

Thank you.

Liz Ogbu Co-Principal Investigator and Project Director Design for Reuse Primer

INTRO-DUCTION Liz Oglu

WASTE NOT

What does it mean to build green? As the concept of sustainable building has gained greater traction within and outside of the design and construction industry, "building green" has often been linked with achieving higher levels of energy efficiency or improved air quality. Materials have often played a secondary role. Even when considered, the sustainable materials market tends to focus on new rapidly renewable materials, sustainably harvested materials and materials with recycled content such as bamboo flooring, certified wood and recycled glass finishes. Yet, as the 15 projects profiled in the Design for Reuse Primer show, material reuse represents one of most creative, exciting and effective approaches to building green.

Reused, or reclaimed, materials are materials extracted from the waste stream and repurposed without further processing or with only minor processing that does not alter the material's nature. Old bricks cleaned of their mortar and used to create a new facade, wood beams remilled into flooring, and wood from packing crates fashioned into window trim are all examples of reuse. Reuse is not to be confused with recycling. Recycling also involves removal

The Jewish Reconstructionist Congregation used reclaimed materials extensively as part of the first LEED Platinum house of worship.

of materials from the waste stream, but those materials undergo significant processing to convert them into new products. Waste paper reduced to pulp and then combined with pulp from new wood to produce new paper is a form of recycling.

By not undertaking extensive reprocessing, material reuse provides buildings with features difficult to retain in the recycling process. From reclaimed cypress that recalls 19th-century Eastern European Jewish culture to 100-year-old brick from the deconstruction of an Army warehouse, reclaimed materials infuse the buildings profiled here with a beauty, texture and history that inspired creativity in the designers and brings richness to the experience of the users.

The potential of material reuse to impact the building industry's environmental footprint is significant. Environmental Building News reports that building construction accounts for nearly 30% of all raw material consumption. Unfortunately, much of that material winds up trashed. Nearly one-third of the waste in U.S. landfills comes from building construction and demolition debris, according to the U.S. Environmental Protection Agency. If, as Environmental Building News reports, over 25% of the buildings existing in 2000 will be replaced by 2030, we'll have a staggering amount of discarded material on our hands over the next two decades.

This is alarming not only because we're filling up landfills and wasting valuable materials, but because of the harm it is doing to our atmosphere. Organic materials such as wood, which represent a significant amount of overall construction and demolition debris, eventually break down and produce methane. A greenhouse gas, methane has a global warming impact many times worse than carbon dioxide. Reusing wood

A living building, the Omega Center incorporates reclaimed Cypress as part of its commitment to tread lightly on the earth.

Introduction

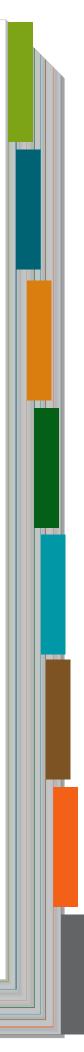
reduces methane emissions from landfills. What's more, according to the Deconstruction Institute, every ton of reused wood avoids the emission of 60 pounds of greenhouse gases created when new lumber is harvested and milled.

The projects profiled here are part of a movement among certain designers, builders and clients to turn these statistics around. By reducing the need for raw material consumption, the energy associated with manufacturing and transporting raw materials, and the amount of waste sent to landfills, reclaimed materials provide a prime opportunity to follow the sustainability mantra of "Do more with less."

SEE ONE, DO ONE, TEACH ONE

Despite the potential of material reuse, it has been a largely untapped resource. Although many case studies exist about sustainable building projects, it is often difficult find examples of material reuse. This is particularly true in commercial-scale construction, where integrating material reuse into the design and construction process can sometimes seem daunting. The Design for Reuse Primer is part of an ongoing initiative by Public Architecture to bring reuse stories to light. By discussing the challenges and demonstrating the benefits of reclaimed materials, we hope to demystify reuse.

The case studies represent a diverse mix of program type, location, size and client. They reveal that there is not one path to material reuse. However, some common lessons to consider can be found across projects:


Think reuse from the start

Building sustainably requires thinking about relevant strategies from the early phases of design. Material reuse, which should be integrated into a comprehensive sustainability strategy, should be

4

Ever since ScrapHouse, a demonstration house built completely from scrap in 2005 in San Francisco, Public Architecture has been committed to inspiring and facilitating reuse. Previous resources developed include a podcast, articles and presentations. Visit designforreuse.org to learn more.

discussed from the beginning. The project team of the Vancouver Materials Testing Facility found strategizing early about reuse made it easier to navigate the challenges and capitalize on the benefits.

Get team buv in

Beyond starting the discussions early, it is critical to engage all stakeholders in the process. Many good ideas arise outside of the formal design process. At the Alberici Corporate Headquarters, members of the construction team came up with the idea of using reclaimed sheet piling for a landscaping retaining wall.

Don't write the specs in stone

Reclaimed materials aren't off the shelf products for which a manufacturer can provide standard information. It is important to write specifications that are clear about expectations, such as structural performance or storage requirements, but build in flexibility, such as providing a range of acceptable hues for a particular finish material. Clear specifications for the Long Center for Performing Arts helped with the deconstruction and reuse of tricky items such as the multicolored aluminum roof panel. By also being clear about who has responsibility for sourcing, approving, purchasing, storing, decontaminating, refurbishing or modifying, and installing the reclaimed materials, they made it easier for subcontractors to bid on the job.

Build reuse relationships Several projects, including the Mountain Equipment Co-op stores in Ottawa and Winnipeg, obtained materials through "shopping the site," or onsite deconstruction. Others, such as the Omega Center for Sustainable Living and the Chartwell School, showed how reclaimed mate-

Aluminum panels from the original structure's dome addded color to the Long Center's facade.

Introduction rial stores, suppliers and brokers can also be valuable sources. Building relationships with these additional sources can make you more familiar with the range of materials available and make suppliers better acquainted with your needs. Knowing more can facilitate a more efficient, creative and cost-effective material reuse process. Be flexible Reclaimed materials have an inherent variability to them. Everyone, from the client to the designer "MOM to the contractor, needs to maintain some flexibil-TAUGHT US ity around material appearance and availability. TO EAT But also identify things that shouldn't be compromised, such as energy efficiency, indoor air **EVERYTHING** quality and overall aesthetic goals. ON THE PLATE. Factor in time I VIEW IT THE On every construction project, timing is always an issue, and it's even more so when it comes to SAME WAY material reuse. New materials can often be DEALING ordered within a defined time frame that fits the WITH mainstream building process. The infrastruc-STRUCTURE. ture around reclaimed materials, particularly for IF THERE'S commercial-scale construction, is less refined. By engaging a reuse supplier early in the design MATERIAL process, the Sidwell Friends Middle School proj-AVAILABLE, ect team was able to factor into the overall project WHY WASTE schedule adequate time for identification, sourc-IT IF IT ing, procurement and refurbishment of key COULD BE reclaimed materials. SENSIBLY Be strategic with contracts BUILT IN From design/build to multiple prime, there are ANEW various types of contracts used in the building industry. When it comes to reuse, it is important DESIGN?" to clarify roles and responsibilities regardless of —Paul Fast, structural engineer, the type contract used. The Portola Valley Town Vancouver Materials Testing Center found the multiple prime contract struc-Facility 7

6

ture facilitated the reuse process through strategies such as phasing. Splitting up abatement, deconstruction and demolition helped manage costs. It also enabled them to have a construction manager serve as the primary reuse champion and keep everyone on track.

Be creative

Think of reclaimed materials as a tool for creative invention. Their features can sometimes provide textures, colors or sizes unavailable or unaffordable — new. Also think about reusing materials in applications different than their original use, such as the steel railroad tracks used as a trellis at the Eastern Sierra House or the exterior aluminum roof panels used as interior paneling at the Long Center for the Performing Arts.

Test it out

Reclaimed materials may not come from a factory, but that doesn't mean they can't be viewed beforehand. Try to get samples during the design process, and test out ideas and address challenges with mockups as was done with the interior wall and ceiling panel assemblies in the Portola Valley Town Center. Testing materials for structural integrity or grading wood can also make the reuse process easier.

Share the story

Unlike most new materials, reclaimed materials often come with a history. Incorporating these materials, with their embedded narrative of a place or culture, can provide a meaningful connection to a sustainable vision. Projects such as the Omega Center for Sustainable Living and the WHO WE Sidwell Friends Middle School show how highlighting reclaimed materials through design, signage or tours shares that history and vision with others.

"WE WANTED A BUILDING THAT WOULD PHYSICALLY **EMBODY** WERE."

-Rabbi Brant Rosen, client, Jewish Reconstructionist Congregation

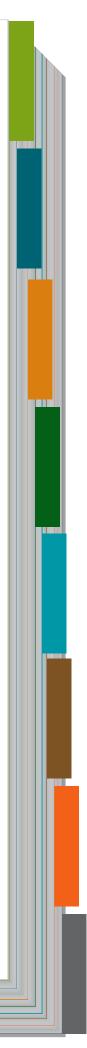
Introduction

DOES REUSE COST MORE?

As frustrating as it can be to hear this, the answer is: It depends.

Sometimes using reclaimed materials is flat-out less expensive, such as when reclaimed lumber provided a cost savings over new Forest Stewardship Certified wood for the Omega Center for Sustainable Living. Reuse can also be a way to build with higher quality materials that would be too expensive if purchased new, such as the wood flooring at **Benny Farm**. In other cases, the cost of the material or refurbishment may be a significant increase over new but the client may choose it anyway because it meets their design, functional or environmental goals. When building their Town Center, the Town of Portola Valley decided to purchase reclaimed Alaska Yellow Cedar at a premium because it provided an aesthetic that reflected the values of the community. Reclaimed materials often have intangible financial benefits. Several projects, such as the Portola Valley Town Center and the Long Center for Performing Arts, found that incorporating reclaimed materials provided a compelling narrative that gave their capital campaign efforts an extra boost

When evaluating cost, it is important to be strategic and to understand tradeoffs. Before deciding on a material, the project team should assess what's involved, from decontamination and storage to refurbishment, installation and future maintenance. Tapping into the network of reuse consultants such as deconstruction contractors, reuse suppliers and reuse brokers can help supply this knowledge. This evaluation should not only be based on pre-installation cost, but should also include what it takes to maintain the material once the project is built.


9

8

Portola Valley Town Center. Reclaimed Yellow Cedar was used to create sunscreen louvers. The buildings are clad in reclaimed redwood.

THE REUSE PROCESS

The various projects reveal several strategies of how to deal with these issues. In general, it is useful if material identification occurs at the project start or initial design phases. Research around sourcing should also occur at this point, but depending on the contract structure and materials desired, actual sourcing and procurement, can occur in the latter design phases or during construction. It is sometimes advisable for the owner to pre-purchase high value materials that may be of limited availability. But the financial and storage capacity of the owner is an important consideration. In some cases, reuse brokers or contractors may be able to help provide the space.

Any reclaimed material chosen should be carefully evaluated for its refurbishment needs, and the time associated with that process should be factored into the overall project timeline. This information as well as details concerning selection, storage, and installation processes should be captured in the project's material specifications. During construction, the design team should review the quality of any reclaimed materials procured by the contractor.

WHAT TO REUSE?

Wood is by far the most commonly reclaimed material used in the case study projects. In the past decade, the infrastructure around this market has matured considerably. There are many sources, from deconstruction companies to reuse retailers to specialty suppliers. Much of the reclaimed wood available is old growth lumber, often of greater quality and durability than the newer woods on the market. If using reclaimed wood from onsite deconstruction, a certified wood grader is helpful for verifying strength and quality. A structural engineer should be brought in if the wood is to be

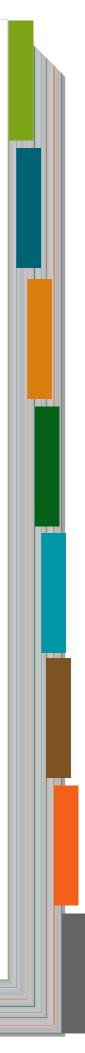
Reclaimed wood samples considered for use in the **Operation Comeback 5200** Dauphine Street project.

Introduction

used in structural applications.

Other common materials used include brick and metal. But many of the projects profiled here also provide examples of a wide range of reclaimed materials and components, from marble toilet partitions in the Long Center for the Performing Arts, airplane flaps in the Eastern Sierra House, granite slabs in the Alberici Corporate Headquarters, carpet in the Philips Eco-Enterprise Center and gas-fired HVAC units in the Vancouver Materials Testing Facility.

WHERE DO WE GO FROM HERE?


As sustainable building continues to evolve beyond energy efficiency to encompass issues like cradle to cradle design and carbon footprint reduction, material reuse takes on even greater importance. Clearly, the infrastructure of the reclaimed materials market has not fully matured. Issues around codes, supply and demand, and experience present challenges to development. This is not dissimilar to the state of the recycled materials market more than a decade ago. At the time, few manufacturers developed products with — let alone provided information about — recycled content. Yet, as the green building movement matured, demand for such products increased. Now, there are countless products that brandish their recycled content as the foundation of their marketing strategy. Such materials have become commonplace.

At the heart of many of the issues around a material reuse market is lack of awareness. Sharing knowledge is perhaps the best solution to that. The Design for Reuse Primer features process-based case studies of 15 projects from the U.S. and Canada and a variety of resources. From a school for children with learning differ-

10

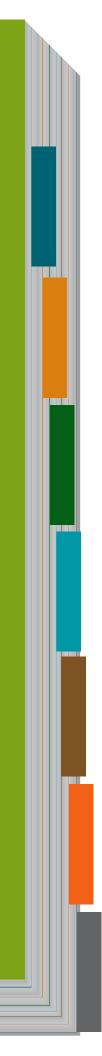
A shelf made from a salvaged airplane flap in the Eastern Sierra House.

ences to a performing arts center to a corporate headquarters, the diverse projects in the Design for Reuse Primer provide insights about the material reuse process in many contexts. Notably, they are not just fascinating examples of material reuse, but inspiring models of good design.

Chartwell School not only incorporates reuse, but thinks for the future by being designed for disassembly.

p. 3 Photo: Steve Hall © Hedrich Blessing p. 4 Photo: Copyright © Assassi p. 5 Photo: © 2005 Cesar Rubio Photography p. 6 Photo: © Nelsen Partners, . Dan Gruber p. 5 Photo: © 2009 Cesar Rubio Photography p. 11 Photo: ©Edward Caldwell edwardcaldwellphoto.com p. 12 Photo: Michael David Rose / MDRP.NET

CIVIC


- Portola Valley Town Center 17
- Vancouver Materials Testing Facility 29

"IF YOU BUILD A PROMINENT" PROJECT THAT CHANGES THE PERCEPTION OF THE MASSES, THEN THE DEMAND WILL GO UP."

—David Desrochers, client, Vancouver Materials Testing Facility

Federal, state, and local governments are helping to propel the sustainable building movement by enacting green codes and policies. Civic buildings are increasingly serving as models of how to build better and greener. These buildings illustrate a commitment to sustainability that can be more concrete than changes in policy. Despite this trend, material reuse has been an underutilized strategy in civic buildings, often because of concerns about cost and quality. The public projects featured here demonstrate that reclaimed materials can be used to create beautiful, high quality buildings without breaking the bank. Portola Valley's new Town Center exemplifies how carefully selected reused materials can reflect and reinforce a community's sense of self. Vancouver's Material Testing Facility incorporates extensive material and equipment reuse, resulting in a building that instilled a sense a pride in the project team, clients, and building users. In these civic projects, we find not only beacons of sustainability but also of reuse.

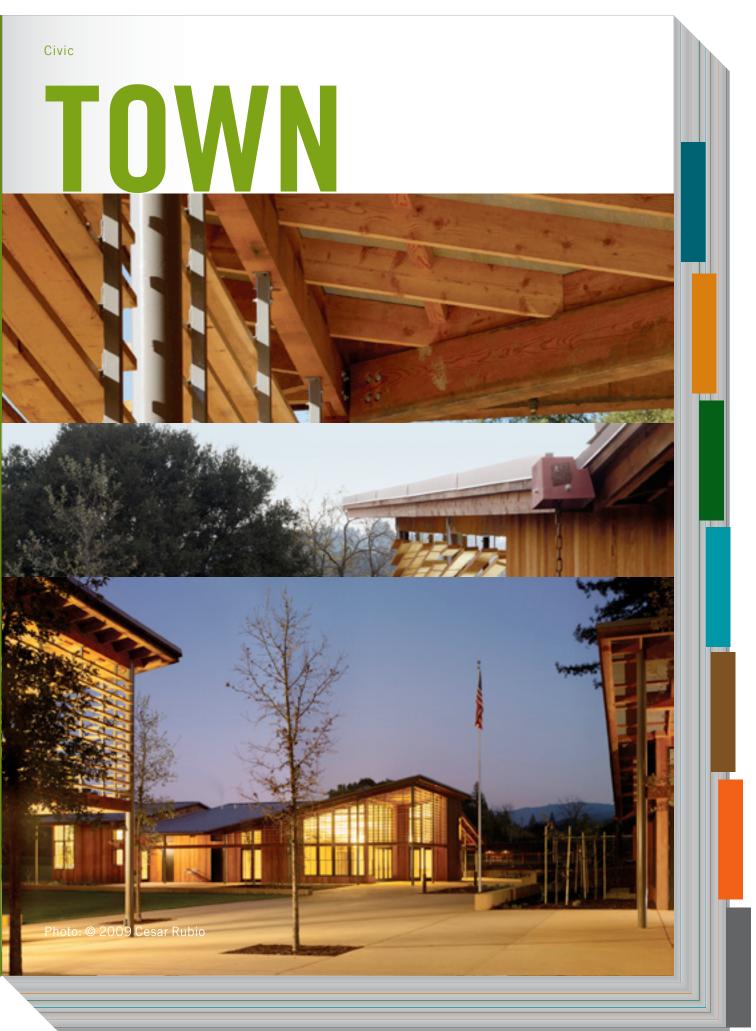
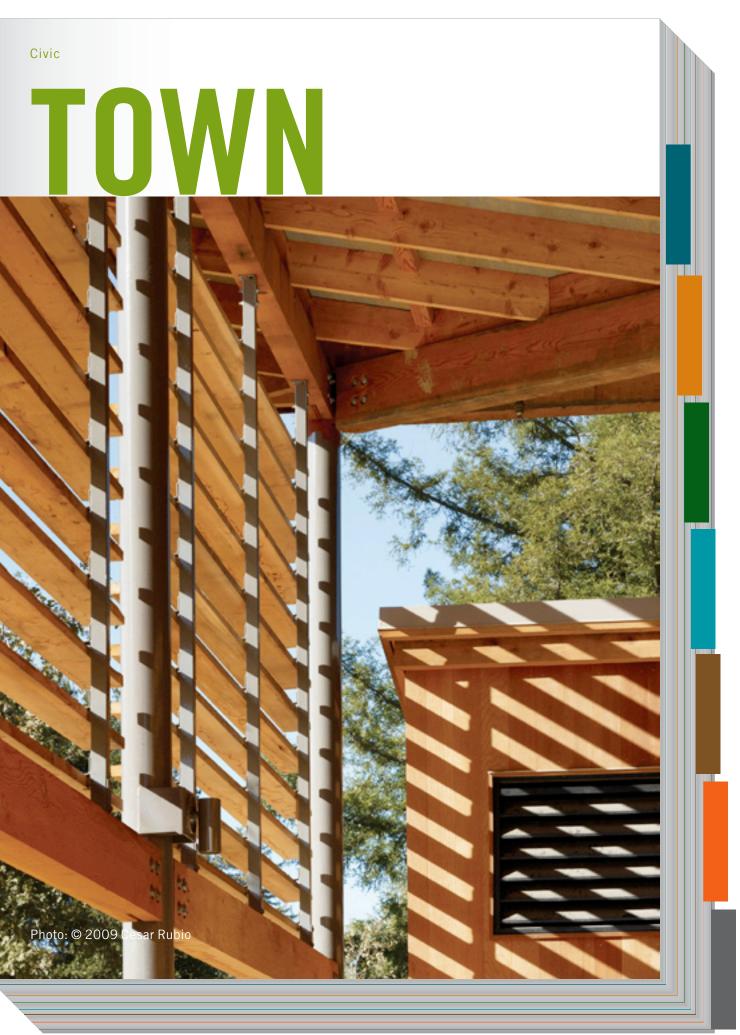



Photo: © 2009 Co

TOWN CENTER

KEY INFO AND REUSE-RELATED PROJECT TEAM MEMBERS

PROJECT NAME Portola Valley Town Center

Portola Valley, CA

YEAR COMPLETED

PRIMARY USE

order & safety,

Assembly, Public

CONSTRUCTION

New construction

LOCATION

2008

Library

TYPE

TOTAL PROJECT COST (LAND EXCLUDED) \$20 million

MANAGER Construction

CERTIFICATIONS LEED-NC Platinum

19,900 Sq ft

CLIENT/OWNER

SIZE

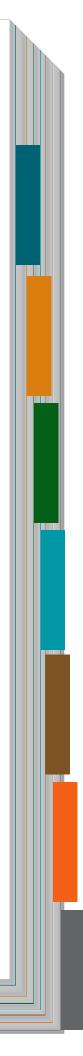
Engineers

REUSE Town of Portola Valley

ARCHITECT Siegel & Strain Architects with Goring & Straja Architects

Company

17


CONTRACTOR TBI Construction &

Management

STRUCTURAL ENGINEER Forell/Elsesser

CONSULTANT Reusable Lumber

DECONSTRUCTION CONTRACTOR **Roldan Construction**

Town Center

CIVIC CENTER WINS SUPPORT BY HONORING THE PAST AND BUILDING FOR THE **FUTURE**

Portola Valley's new Town Center is "a story about reusing materials," said Town Councilmember Ted Driscoll.

Since opening its doors in 2008, this small but remarkable civic center has pulled in numerous design awards and honors, including LEED Platinum certification. Reflecting the community's longstanding commitment to environmental stewardship, the new Town Center was envisioned as a model of green design, with deconstruction and reuse at the heart of the green building strategies.

The Town Center's three buildings—a town hall, library, and community hall-replaced seismically unsafe structures built in the 1940's. Rather than demolishing the old facility and landfilling the materials, the buildings were carefully dismantled and the materials creatively incorporated into the new structures. The new campus, which features three single-story buildings clustered around a plaza, has a low-key beauty that blends into the wooded landscape.

Portola Valley is an affluent bedroom community for Silicon Valley and Stanford University, with residents who value the area's scenic landscape and rural charac-

But as the project's architects introduced the proposed design and as that design evolved in response to the community's concerns and priorities-attitudes changed.

A focus on sustainability, including a commitment to reuse, ultimately earned the project overwhelming community approval. In fact, there was such a groundswell of support that \$17 million of private donations flowed into the town's coffers, funding 85 percent of the project's costs.

ter. When town leaders proposed replacing the outdated Town Center with a new campus, there was an outcry from many citizens who felt an emotional connection to the old buildings.

"We are a unique town," said Councilmember Driscoll. "We had the resources and education level to know what do. If not here, where? It was important for us to show leadership."

- Ted Driscoll, Town Councilmember

FLEXIBILITY IS ESSENTIAL WHEN DESIGNING FOR REUSE

Siegel & Strain Architects, Goring & Straja Architects and TBI Construction and Construction Management were all brought on board while the town was still determining budget. Without this early engagement, a high level of material reuse probably wouldn't have been possible given that the availability of salvaged material drove many of the design decisions.

Upfront costs of deconstruction also need to be built into the budget from the start. As Driscoll recalls, Larry Strain of Siegel & Strain Architects argued that if you pay more for deconstruction rather than demolition, you'll save in materials cost later.

"Larry was always talking about the economics of this," Driscoll said. Persuaded by Strain, the town council agreed that it would be cost effective to pay more for deconstruction in order to salvage reusable materials.

Following the schematic design development, which laid out the project's general scope, the architects wrote a deconstruction specification that instructed the salvage crew on exactly what should be extracted from the buildings. The building industry doesn't have common standards for this and Strain admitted that this one—the

20

first his firm had written—was far from perfect.

Town Center

Later when Jim Steinmetz of Reusable Lumber Company joined the team as a deconstruction consultant, he advised the architects to reconsider certain materials they had planned to use. For instance, the specification called for milling new interior wall paneling out of the old Town Center's Douglas Fir roof framing beams. However, Steinmetz noted that there was plenty of 2x6 roof decking available, which had fewer knots and could be de-nailed and milled into interior wall paneling more easily than the thick framing beams. A decision was made to use the roof decking, instead, which saved time and money.

As the project progressed, the community's commitment to green building and reuse grew. This sparked some design changes. The exterior siding of the new buildings, for example, was originally designed to be cement fiber shingles. But in light of the town's commitment to using salvaged materials, the architects changed course and specified reclaimed redwood siding—sourced offsite—for the building exteriors. Cladding the building with old-growth redwood linked the buildings to the redwood groves on site and became a major feature of the Town Center's visual identity.

Civic

Flexibility is one of the keys to success when designing with reused materials, said Strain. The design needs to be adaptable as new reclaimed materials become available or expected ones go away.

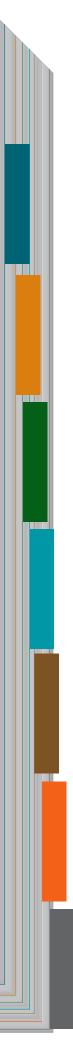
Ultimately, "well over 90 percent of the old buildings, by weight, were reused," said Driscoll.

Interior of library building with salvaged wood ceiling paneling.

"WELL OVER 90" PERCENT OF THE OLD BUILDINGS, BY WEIGHT, WERE REUSED."

- Ted Driscoll, Town Councilmember

MULTI-PRIME CONTRACTS CAN HELP MANAGE COSTS


From a contractual standpoint, deconstruction and onsite reuse can be challenging to execute. For the Town Center, deconstruction required three separate contractors—an abatement contractor to remove materials contaminated with lead paint, a deconstruction contractor to dismantle and stockpile the salvageable materials, and a demolition contractor to remove what was left.

The project team initially put the demolition contract out to bid beforedoing the abatement and deconstruction work. The bids came back higher than anticipated, in part because the bidding contractors didn't know how much material would be removed during deconstruction.

"Sometimes the demo guy doesn't know what the salvage guy is going to take out," said the project's construction manager, C.R. Hodgson of TBI Construction and Construction Management. "Sometimes the salvage guy takes out a lot and sometimes not."

The town decided to hold off on awarding the demolition contract, and Hodgson began looking for ways to hold down costs. The project's multiple prime contract structure proved to be an effective means of cost control.

In such a structure, each contract can be let out to bid

Town Center

individually rather than all at once. This allowed Hodgson to stagger the bids on the abatement, deconstruction, and demolition work. The abatement work was carried out first to remove contaminated material. This made the subsequent deconstruction work easier and reduced its cost.

Even so, Jeff Roldan of Roldan Construction, the selected deconstruction contractor, said that "it was difficult to bid because a lot of the materials were hidden. It's hard to guarantee. During bidding, I was concerned about covering our hours because deconstruction was not something we had historical data for."

After Roldan completed deconstruction and the demolition contract was rebid, the bidding contractors could see how little of the buildings remained. Thus, they were able to provide more accurate—and significantly lower priced—bids.

The multi-prime contract structure also provided flexibility when sourcing off-site reclaimed materials. If desired materials like the redwood siding were not available at a given time, the construction manager would postpone bidding out that portion of work until an adequate source was located. This ability to "shop around" saved money and produced a higher quality end result. For each material sourced off site,

Strain listed several possible suppliers in the specifications. For some materials, Hodgson also used the Internet to find additional sources.

Salvaged wood from old town center buildings being reworked by Reuseable Lumber.

"IT WAS DIFFICULT TO BID BECAUSE A LOT OF THE MATERIALS WERE HIDDEN."

- Jeff Roldan, deconstruction contractor

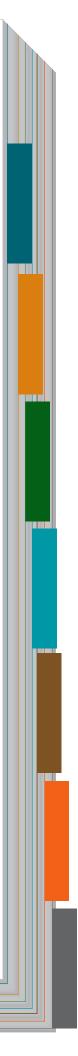
Civic

CONSTRUCTION PROCESS CHARACTERIZED BY CREATIVE PROBLEM SOLVING

On a typical construction project, if you underestimate how much of a material you need, you can buy more. But it's not always that easy when building with reclaimed materials. Some salvaged wood, for example, has a unique look that can be difficult and expensive to match if the original supply runs short.

For the Portola Valley team, the potential for shortages was amplified by the fact that the deconstruction specification was written so early in the design process. Fortunately, Hodgson was extremely proactive in working with the contractors to find solutions when problems arose.

In one instance, when a contractor ran short of the salvaged Douglas fir he was using as trim for highly visible windows, his instinct was to make up the remainder with new fir. But when Hodgson got wind of the shortage, he remembered that metal roofing panels had been shipped to the site in crates made of fir. The crates, which were still on site, were disassembled, de-nailed, and cut to size for the window trim. The crate wood matched the salvaged wood trim that was already in place so well that the architect didn't notice the change until Hodgson pointed it out.


22

Town Center

During the course of construction, the quest to reuse materials became almost competitive, recalls Driscoll. "I'd show up and the contractor or superintendent on the project would say they had to take down a tree but saved it for reuse. Everyone got into it," he said. "It was like they were trying to one-up each other a little bit."

For certain design elements, mock-ups were used to evaluate salvaged material options. For example, the architect originally requested that 20-foot long boards be used to create interior wall and ceiling paneling. However, Reusable Lumber Company, which was doing the milling, wasn't able to obtain 20-foot boards from the available salvaged wood.

Hodgson then requested samples of shorter boards in order to build a mock-up. He also requested "worst-case scenario" samples from the milling contractor, in order to prepare the architect and client for the unpredictable look that can sometimes result when using salvaged materials. The mock-ups, which went through a series of iterations, allowed everyone to visualize what the paneling would look like before it was installed.

Town Center

Civic

A PLACE TO BE PROUD OF

The project achieved Platinum certification, the highest rating available from the LEED for New Construction Green Building Rating System. Among the LEED credits it achieved were Materials and Resources (MR) 3.1 and 3.2, two resource reuse credits that are rarely attained by LEED certified buildings. The Portola Valley Town Center earned them thanks to its extensive use of reclaimed wood and other salvaged materials.

Strain estimated that approximately 25 percent, in board feet, of the wood used to build the Town Center was reclaimed. Overall, reclaimed materials accounted for 14 percent of the total materials cost, well over the 10 percent threshold required for achieving the MR 3.1 and 3.2 credits. In fact, Strain noted that it was easier to achieve this credit than some of the other materials and resources credits.

After the project was completed, Strain continued to analyze its impacts in an effort to understand and demonstrate the power of material reuse to significantly reduce a building's carbon footprint. Using the U.S. EPA's WAste Reduction Model (WARM), a tool that calculates the greenhouse gas emissions savings of waste management practices, Strain determined that the project's use of salvaged lumber saved 24.8 tons of carbon over the purchase of new lumber.

Pulverizing the old buildings' concrete foundations and reusing the crushed concrete as site fill and road cover saved 11.7 tons of carbon by eliminating many truck trips to and from the site.

Town staff now use the project to encourage residents and local businesspeople to include more deconstruction and reuse in their construction projects. "When people come to the town and say, 'I don't really think it's a good idea to deconstruct my house in a sustainable way and reuse it,' the person behind the desk can say we did it and got a really nice building out of it," said Driscoll.

In fact, it's much more than a nice building. Portola Valley's Town Center exemplifies a civic center at its best: it's a place that brings people together and showcases the values of the community.

New libary building with salvaged redwood siding and Alaskan Yellow Cedar sunscreen louvers.

p. 21, 24 Photos: © 2009 Cesar Rubio p. 22 Photo: Courtesy Siegel & Strain

Civic

LESSONS LEARNED

MAKE MOCK-UPS

Budget for mock-ups. Use them to resolve unexpected problems and help the team evaluate design decisions related to reused materials.

BE FLEXIBLE

Be willing to adjust certain design elements to accommodate special characteristics of salvaged materials, such as available board lengths. This flexibility makes it easier for contractors to source salvaged materials in sufficient quantity and quality.

THINK REUSE FROM THE START

Committing to reuse early in the design process allows time to gain team and community acceptance for salvaged materials.

ONE STEP AT A TIME

Consider phasing in abatement, deconstruction and demolition to allow for more accurate bids. More clarity about the structure and materials can help reduce the fear of unforeseen field conditions that tend to trigger large cushions within bids.

BID BETTER

Consider contract structures, such as multiple prime contracts, that can provide flexibility in the bid process and facilitate deconstruction and reuse.

CHAMPIONS Make sure the project has leaders—like the Town Center's construction manager—who embrace the project's reuse **AIA COTE TOP TEN CASE STUDY** goals and help the entire construction team accomplish aiatopten.org/hpb/overview. them.

PLAN FOR SHORTFALLS

IDENTIFY REUSE

Anticipate potential shortages of reclaimed materials and identify additional sources or alternatives before you need them.

FIND COMMON GROUND

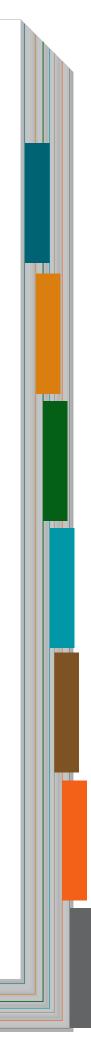
Reusing the old Town Center's building materials conveyed that the town respects its people, its past, and the planet.

Town Center

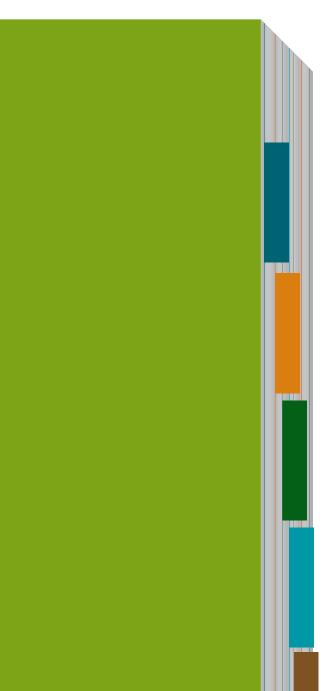
LEARN MORE

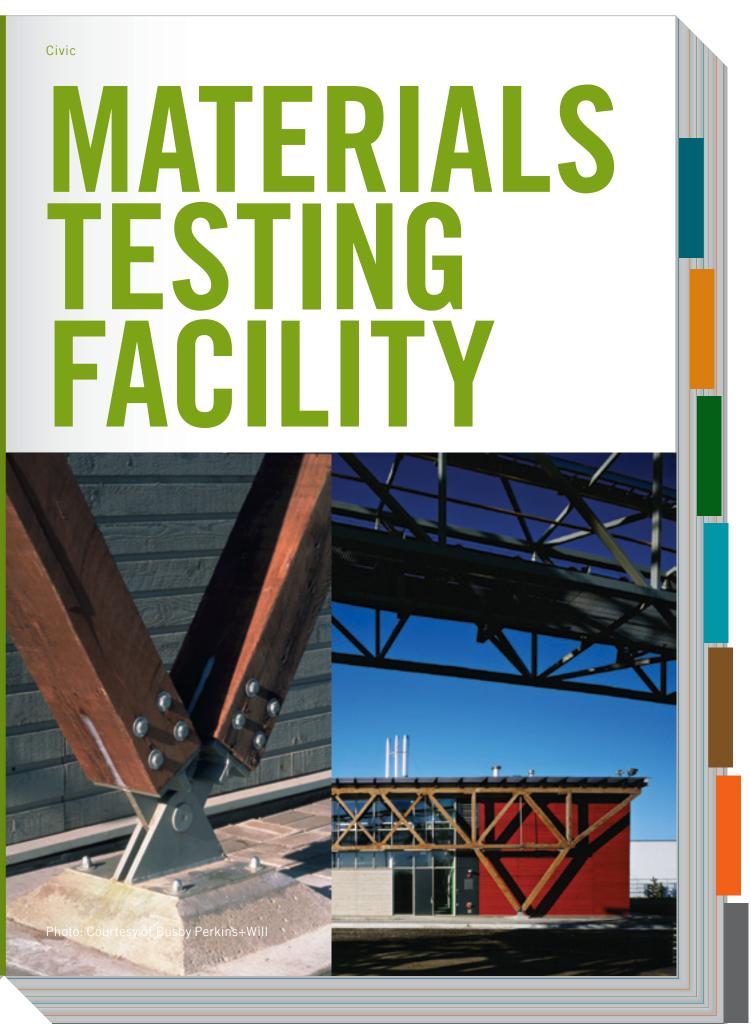
ABOUT THE PORTOLA VALLEY TOWN CENTER portolavalley.net/index. aspx?page=102

GORING & STRAJA ARCHITECTS gasarchitects.com

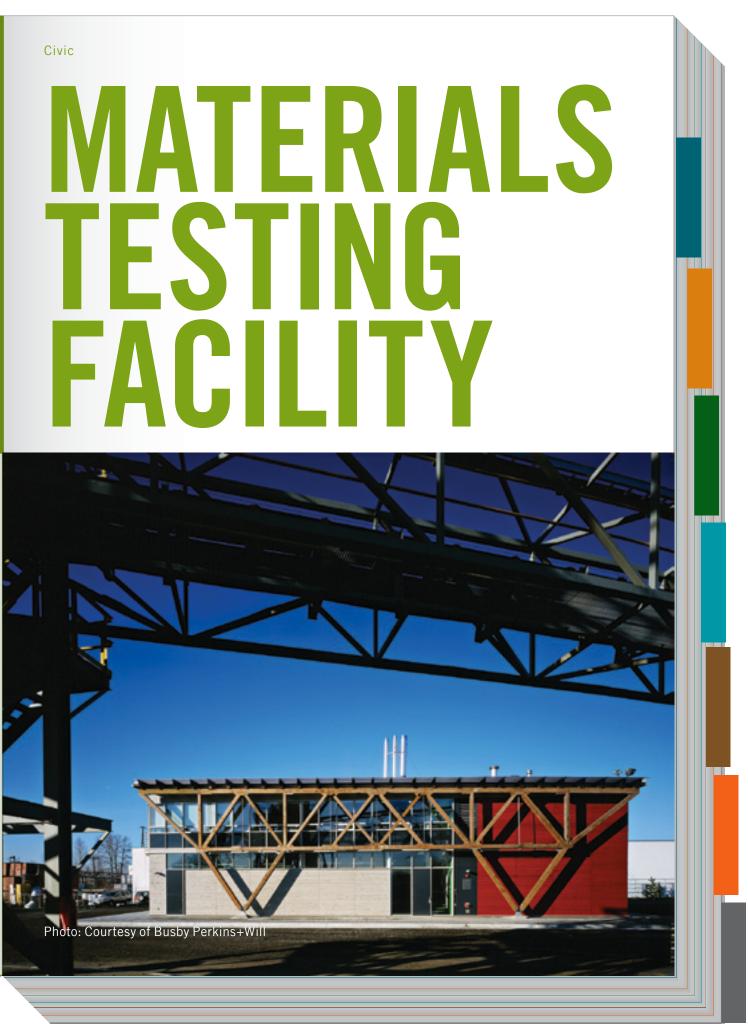

cfm?ProjectID=1322

SIEGEL & STRAIN ARCHITECTS siegelstrain.com


Tap into the community's values. TOWN OF PORTOLA VALLEY **C&D WASTE ORDINANCE** portolavalley.net/ Modules/ShowDocument. aspx?documentid=549



- Ted Driscoll, Town Councilmember


Civic Town Center						
MATERIAL	ORIGINAL USE	REUSE APPLICATION	SOURCE	SOURCE LOCATION	QTY	REFURBISHMENT
6x10 dimensional lumber	Beams	Beams	On-site	On-site	400 Ln ft 2,000 Bd ft	Faces resawn
2x6 Douglas Fir	Roof Decking	Interior paneling	On-site	On-site	3,650 Bd ft	Milled
2x6 Douglas Fir	Roof Decking	Ceiling paneling	On-site	On-site	8,220 Bd ft	Milled
Glu-lam beams	Beams	Countertops	On-site	On-site	150 Sq ft	Milled
Blue-gum Eucalyptus trees	Trees	Wood flooring	Offsite	Portola Valley, CA	2,635 Bd ft	Milled
Redwood		Exterior siding	Offsite, vendor: McMullin Lumber	Crescent City, CA	11,914 Bd ft	Milled
Alaskan Yellow Cedar		Sunscreen Iouvers	Offsite, vendor: Bear Creek Lumber	Winthrop, WA	2,660 Bd ft	Milled
12" – 16" Alder trees	Trees	Cladding for steel columns	On-site	On-site	54 Ln ft	Cut-to-size
Concrete & CMU		Site fill, road base rock	On-site	On-site	2,770 Tons	Crushed

F. 51 **FF**

ATERIALS TFSTIN FACILITY

KEY INFO AND REUSE-RELATED PROJECT TEAM MEMBERS

PROJECT NAME Vancouver Materials **Testing Facility**

Canada

1999

TOTAL PROJECT COST (LAND EXCLUDED)

LOCATION Vancouver, BC, \$550,000 CDN

SIZE 4,284 Sq ft

YEAR COMPLETED

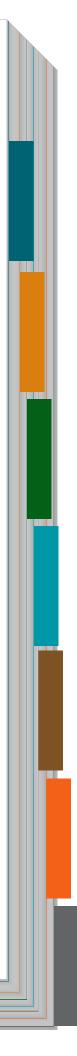
PRIMARY USE Public order & safety, Laboratory

CONSTRUCTION TYPE New construction

CLIENT/OWNER City of Vancouver

ARCHITECT Busby + Associates (now Busby Perkins+Will)

CONTRACTOR MANAGER Ken King & Associates


29

Fast + Epp MEP

Keen Engineering (now Integral Group)

CLIENT'S PROJECT MANAGER David Desrochers

STRUCTURAL ENGINEER

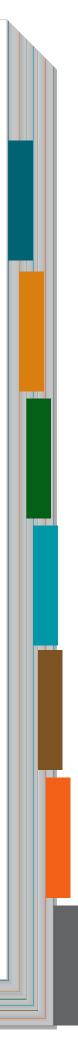
MATERIALS TESTING **FACILITY SHOWS THE** SURPRISING BEAUTY OF WASTE

The City of Vancouver runs its own advanced asphalt manufacturing plant that makes new asphalt as well as recycling old asphalt from the city's roads. The Materials Testing Facility provides lab spaces and offices for a small group of engineers who develop customized asphalt mixes for a range of applications.

When the time came to build a new testing facility, the city initially planned to erect a pre-engineered structure. Architect Peter Busby of Busby + Associates proposed an alternative: creating a new building out of old materials. Not only did reuse offer environmental benefits, it seemed appropriate for a client committed to reuse and recycling in their own work. An integrated project team of the client's project manager, architect, contractor, and structural and MEP (mechanical electrical and plumbing) consultants treated the project as an opportunity to experiment with material reuse and provide the city with an inspirational model of green building. The project ultimately included a wide diversity of reused finishes, structural members and MEP equipment. There was initially some discomfort among the lab's

employees about the decision to build the new facility out of reclaimed materials. But the final product convinced the staff that they were not going to work in a "garbage building," as project manager David Desrochers put it, but in a "beautiful building built of garbage."

31


Materials Testing Facility

Office with beams and wood flooring from salvaged glulam.

"I'M SURE WE COULD" HAVE DONE A PRE-FAB THAT NO ONE WOULD HAVE BEEN PROUD TO WORK IN, FOR CHEAPER, BUT IT WOULD HAVE **BEEN NOWHERE** NEAR THE QUALITY WE GOT AT THAT PRICE WITH REUSE."

— David Desrochers, client's project manager

Materials Testing Facility

Civic

DESIGN FOR REUSE HIGHLIGHTS

— The project site had several wood warehouses slated for removal. Busby and structural engineer Paul Fast of Fast + Epp visited the site to identify potential materials. Together, they selected timber trusses, glulam beams and roof decking.

-Most of the project team came on board during the pre-design phase. Such early involvement allowed reused materials and equipment to shape the design. For example, Fast + Epp worked with Busby + Associates to modify heavy timber trusses from the original building to create a span adequate for the new building. Highest quality individual pieces from all original trusses were swapped in as needed to create the two trusses used.

— Mechanical engineer Kevin Hyde of Keen Engineering obtained surplus heaters, air conditioners and plumbing systems from other job sites in the city. He sourced lighting fixtures and piping from more traditional salvage sources.

— The team based its design on materials they saw in local salvage vards. Uncertain of the availability of the reclaimed materials, contractors initially submitted high bids based on using new materials. In

response, the client purchased most of the reclaimed materials and furnished them to the contractors for installation.

— The high initial bids also led the team to switch from a fixed tender to a multiple prime contract structure with a construction manager. The construction manager, Ken King & Associates, sent components out to bid only when the materials were identified and if necessary, refurbished.

- The client wanted a doubleglazed curtain wall with a warranty. The architects wanted to accommodate this request and still incorporate reclaimed wood and glass. They found a contractor who agreed to fabricate double-glazed glass pieces out of used, singleglazed windows and provide a warranty.

- Reused materials include heavy timber trusses combined to create new trusses, glulam beams transformed into floor decking, and surplus gas-fired HVAC units.

— A third-party examiner calculated that over 80 percent of the materials in the facility are reclaimed.

23

Civic

LESSONS LEARNED

BID BETTER

Consider contract structures, such as multiple prime contracts, that can provide flexibility in the bid process and facilitate reuse.

DON'T FORGET ABOUT MEP

Reclaimed MEP equipment can be tricky because older equipment is often less efficient. But sometimes other construction projects have good quality heating units and other equipment that is headed for the junk pile—either new products that were misordered or lightly used equipment that's no longer needed. Passive equipment such as piping is often fine to reuse.

CHANGE THE CODES

During construction, the electrical inspector noted that the building code required new electrical devices. The reclaimed electrical devices were CSA rated (equivalent of an American UL rating) and fully functional. Busby met with the City to seek a resolution. Within a week, the code was rewritten to allow "new or used" electrical devices.

MAKE STRUCTURAL CON-STRAINTS WORK FOR YOU

Fast + Epp often found clever solutions around the structural constraints of reclaimed materials. Unsure about the structural integrity of the glulam beams, they used many of them as flat 5" thick finished floor decking. Not only did they avoid relying on the glue for structural strength, the thickness of the deck also satisfied the municipal code's fire separation requirements.

ENGAGE THE ENTIRE TEAM IN REUSE

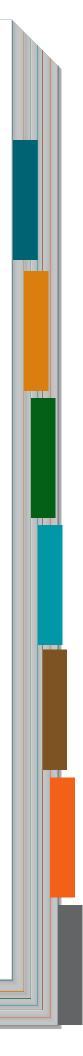
Working together from the start can allow all project stake-**CASCADIA GREEN BUILDING COUNCIL, CASE STUDY** holders—the client, architect, contractor and structural and cascadiagbc.org/resources/ case-studies/COVTestingcenter-MEP consultants—to play meaningful roles in the reuse casestudy.pdf process.

Materials Testing Facility

LEARN MORE

BUSBY PERKINS + WILL busby.ca

DESIGN FOR DECONSTRUC-TION, CASE STUDY design4deconstruction.org/pdf/ MaterialsTestingFacility.pdf

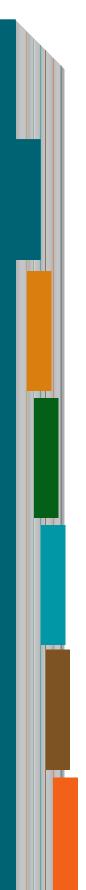

FAST + EPP fastepp.com

INTEGRAL GROUP integralgroup.com

"THE MANAGER OF THE DEPARTMENT WAS DEAD-SET AGAINST THE CONCEPT OF REUSE, FEARING THE WORST... BUT ON THE DAY IT OPENED HE AGREED THE PROJECT WAS SPLENDID AND A **GREAT NEW HOME** FOR HIS TEAM."

— Peter Busby, architect

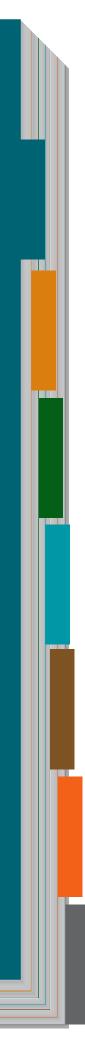
p. 31 Photo: Courtesy Busby Perkins+Will

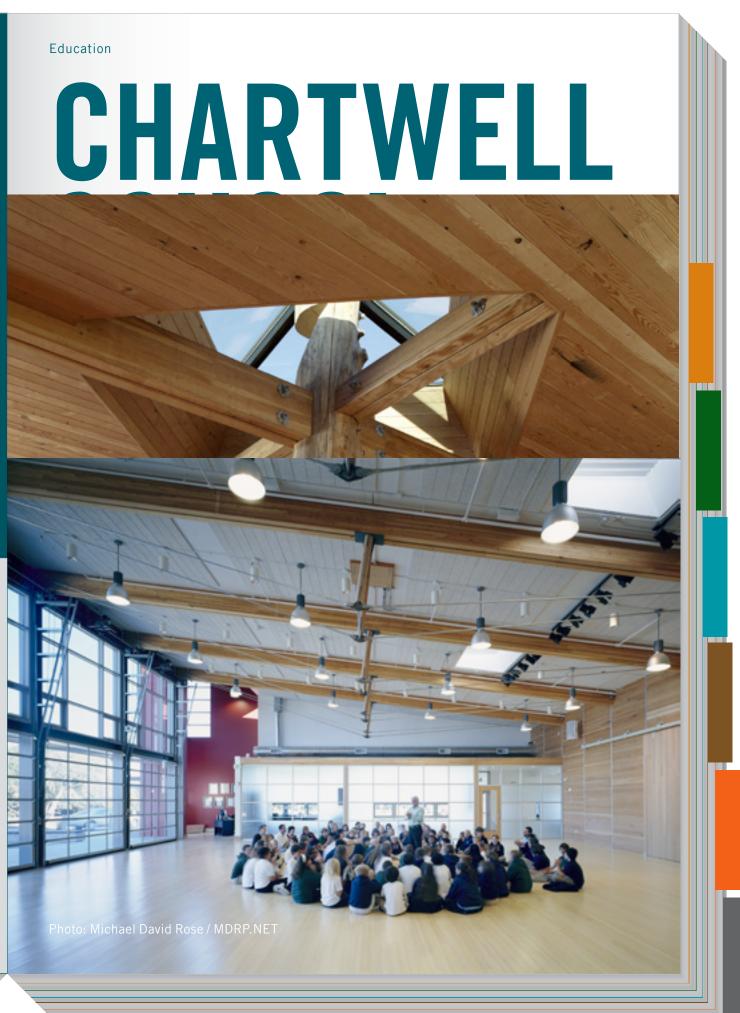

Civic			Mate	rials Testing		
MATERIAL	ORIGINAL USE	REUSE APPLICATION	SOURCE	SOURCE LOCATION	QTY	REFURBISHMENT
Heavy timber trusses	Trusses	Trusses	On-site	On-site	5 Trusses	Reconfigured into 2 large trusses
Glulam	Beams	Joists	On-site	On-site	100 Beams	Cut-to-size
Glulam	Beams	Wood flooring	On-site	On-site		Milled
2x6 tongue & groove lumber	Roof Decking	Roof decking, sheathing, exterior windows	On-site	On-site	30,000 Sq ft	N/A
2x4 dimensional lumber	Framing	Framing	Off-site, vendor	Vancouver, BC		Cut-to-size
Doors	Doors	Doors	Off-site, vendor	Vancouver, BC		Refinished
Glass panels	Various	Curtain wall	Off-site, vendor	Vancouver, BC		Cut-to-size, thermally broken
Plywood	Formwork	Sheathing	Off-site, vendor	Vancouver, BC		Cut-to-size
Interior lighting	Interior lighting	Interior lighting	Off-site, vendor	Vancouver, BC		
Water closets	Water closets	Water closets	Off-site, vendor	Vancouver, BC		Retrofitted
Steel pipes	Piping	Piping	Off-site, vendor	Vancouver, BC		
Fuel-fired heaters	N/A	Fuel-fired heaters	Off-site, construction surplus	Vancouver, BC		
Air handling equipment	N/A	Air handling equipment	Off-site, construction surplus	Vancouver, BC		
Exhaust hoods	N/A	Exhaust hoods	Off-site, construction surplus	Vancouver, BC		

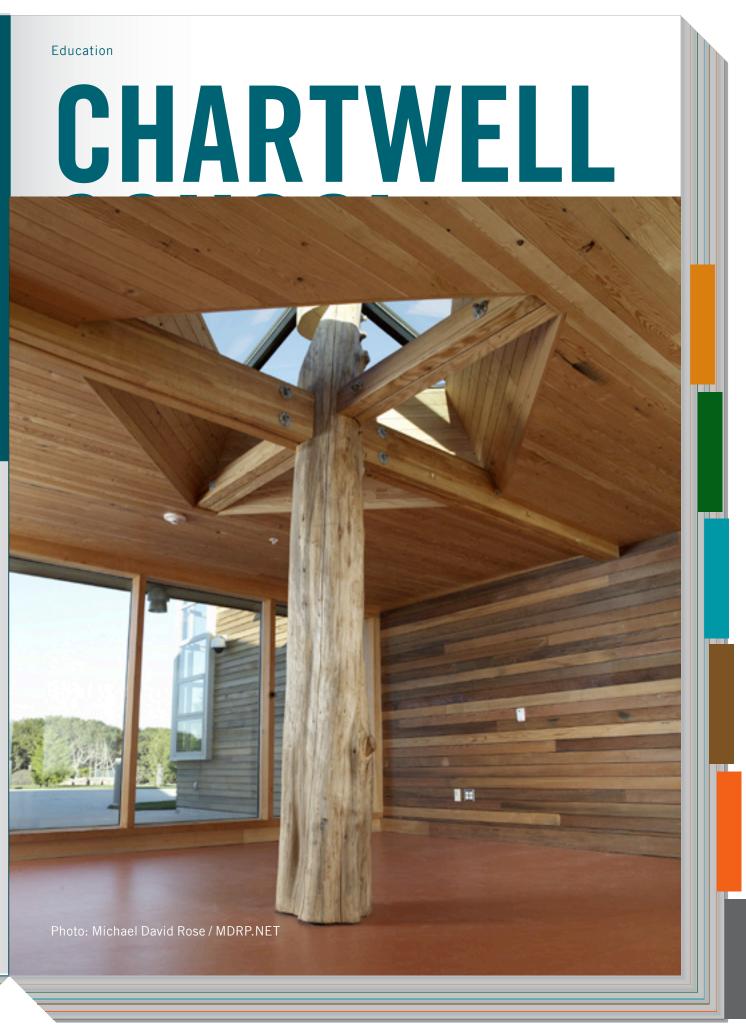
EDUCATION 39 Chartwell School

Chartwell School Sidwell Friends Middle School University of Texas School of Nursing and Student Community Center

34


51 59


"THERE ARE PROBABLY" A LOT OF PEOPLE WHO ARE USING RECLAIMED MATERIALS BECAUSE OF THE STORY THEY TELL AND THE TEXTURE AND THE VIBRANCY THEY BRING TO A SPACE "


-Iris Amdur, consultant, Sidwell Friends Middle School

Successful green schools do more than conserve energy; they help advance sustainability on a broader level by creating environments that are more conducive to learning and more harmonious with nature. By integrating sustainable features that are visible to their users, the buildings become learning tools that increase environmental literacy in the community. Material reuse figures prominently into the green schools featured in this section. Chartwell School uses reclaimed materials to play to the strengths of their students who have language learning differences and respond better to visual cues. At Sidwell Friends Middle School, reclaimed materials tangibly communicate the school's commitment to social responsibility through action. For the University of Texas Health Science Center's School of Nursing and Student Community Center, material reuse contributes to the school's vision of a nurturing building. Together, the projects illustrate how reclaimed materials can provide a meaningful and highly visible statement of educational and environmental stewardship.

CHARTWELL SCHOOL

KEY INFO AND REUSE-RELATED PROJECT TEAM MEMBERS

PROJECT NAME Chartwell School

Seaside, California

LOCATION

CERTIFICATIONS LEED-NC Platinum,

YEAR COMPLETED 2006

PRIMARY USE K-12 education

CONSTRUCTION TYPE New construction

TOTAL PROJECT COST (LAND EXCLUDED) \$9.2 million

CHPS (Collaborative for High Performance Schools) Designed

AWARDS CHPS 2007 Green Apple Award, 2007 U.S. EPA Pacific Southwest Environment Award

CLIENT/OWNER Chartwell School

21,200 Sq ft

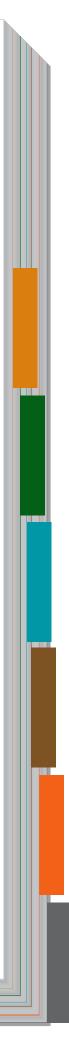
SIZE

39

Associates

Brad Guy

ARCHITECT EHDD Architecture


CONTRACTOR Ausonio, Inc.

STRUCTURAL ENGINEER Tipping Mar +

DECONSTRUCTION CONSULTANT

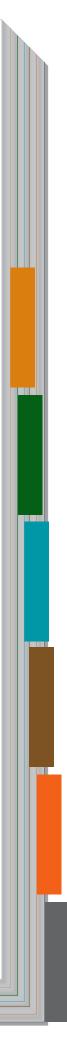
DECONSTRUCTION CONTRACTOR

Paul T. Beck Contractors (On-site Asphalt); Fort Ord **Reuse Authority and** John Stephens (leadbased paint removal)

CREATING BUILDINGS THAT TEACH

At Chartwell School, you won't find educational signs explaining the campus's green features. The buildings themselves teach the students about sustainability. The motivation behind this was due in part to the unique educational needs of the school's student body. Chartwell is an independent school on California's Monterey Peninsula that serves first through eighth graders with language-related learning differences such as dyslexia.

Douglas Atkins, the school's executive director, describes Chartwell's students as bright learners "who have relative strengths in visual and spatial problem solving and are relatively weak at print learning." At the school's new campus, completed in 2006 at Fort Ord, a decommissioned U.S. Army base, students are surrounded by building materials and exposed systems that serve as hands on educational tools. Oral and visual narratives, Atkins believes, have the power to engage students and make environmental values more real to them.


Atkins envisioned the new campus as a place that would foster the development of "sustainability natives," children who grow up with the idea of sustainability as second nature. And so he directed the project team to create the

greenest campus possible—with healthy, daylit buildings that generate much of their own electricity and make the most of beautiful salvaged wood.

Naturally, there are stories behind all that salvaged wood. The redwood bench tops in the courtyard were fashioned from deconstructed trestles that once supported railroad bridges in Sacramento. The campus's two buildings—a multi-use building and a classroom building—are clad inside with Douglas Fir salvaged from barracks disassembled at Fort Ord. The exterior cladding comes from old-growth redwood from dismantled wine and olive oil tanks. When the school's builders were first working with the wood, they could still smell the wine, although by now the fragrance is long gone.

Chartwell School

Inside the buildings, beams, roof joists and other framing components were left exposed so that students can see how the structures were put together and how, someday, they might be taken apart and their materials reused. In fact, both buildings were deliberately designed for disassembly. Compared with a conventional building, they should be easier to dismantle in whole or in part. The idea following that in the future the buildings can be readily adapted for different uses and their components reused.

Chartwell School

struction," which documents the

design team's process of creating

researching local resources, and

Exterior walkway with view to

reclaimed redwood siding.

AN EPA GRANT

ALLOWED THE

analyzing the climatic impacts of

mock-ups, testing scenarios,

material choices.

DESIGNING A BUILDING THAT CAN BE UNBUILT

lumber.

PROJECT TEAM DOES THEIR HOMEWORK

Chartwell selected EHDD Architecture in San Francisco to design the project, due to their strong background in school design and sustainable design. The school provided the architectural team with an "envisioning report" that the school administration alongside a board of experts had produced to articulate the school's needs and hopes for the new campus.

Scott Shell, Principal at EHDD, brought Brad Guy onto the project team. Guy is a leading researcher in deconstruction and design for disassembly (DfD). Design for disassembly is still an emerging technology and at the time, wasn't common practice in the building industry. But Shell and Guy thought the concept held promise for Chartwell: should the school's needs change in the future, DfD would make it easier to adapt and update the spaces and infrastructure. The DfD strategy also reinforced the school's commitment to sustainability.

Shell and Guy brought the DfD idea to Atkins who embraced it. Together, they applied for the U.S. EPA's Waste Reduction grant. This grant--a little over \$29,000-allowed the design team, working with Timonie Hood at the EPA's Region 9 office, to conduct an indepth analysis of material choices and research "design for disassem-

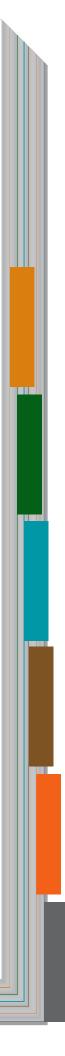
bly" concepts.

Over the course of his career, Shell has worked on many school renovations that resulted in considerable waste because components like windows and wood framing weren't designed or installed in a manner that allowed for easy replacement. Shell believes much of this waste could be avoided if design for adaptation or disassembly were standard practice among architects.

For Chartwell School, the DfD research process began with a look at construction materials that tend to be replaced most frequently, both in the short term and long term. The researchers explored how the design and detailing of specific materials and building components could allow for easy removal later on. The material choices allowed for minimal disruption to adjacent materials and systems, such as how old windows could be removed and new ones installed without affecting adjacent finishes and waterproofing.

The design team also calculated the total embodied carbon for all major building materials in the proposed design and performed a lifecycle assessment using ATH-ENA software to try to understand and minimize the environmental impacts of major materials.

The project research was published in a report funded by the EPA grant, "Design for Decon-


PROJECT TEAM TO RESEARCH MATERIAL CHOICES AND DESIGN FOR DISASSEMBLY CONCEPTS.

The lifecycle assessment contributed to the choice of wood for the structural frame as well as exterior siding and interior paneling. Although the school was built with a large amount of wood, the design team employed a number of strategies to use the material efficiently and facilitate future reuse. In addition to reusing old wood for finishes and furnishings, they utilized advanced framing strategies, including framing 24 inches on center, which uses less wood than the more conventional 16 inch on center framing.

Reducing the overall amount of structural wood saved the school money, which freed up funds to specify Forest Stewardship Council (FSC) certified wood for all the framing lumber; a sustainably forested wood, FSC certified wood often costs more than conventional

"Design for disassembly" figured prominently in the construction process, although, in retrospect, the concept could have been communicated more clearly to the contractor in early team meetings and in the construction specifications. Joseph Piedimonte, Ausonio's CFO/project manager, recalls that when his crew started framing lumber and roughing in electrical and plumbing

Atkins happened to be on site. Atkins halted the work and pointed out that by not drilling into the framing lumber, it would be easier to reuse in the future and would preserve its quality and value. Ausonio's team instead routed over fifteen miles of conduit around the framing.

To preserve the integrity of the high quality reclaimed wood used for the interior paneling, the team utilized fastener systems instead of screws or nails that can damage the wood. Wherever possible, connections between materials were simplified to facilitate deconstruction, and larger structural members were chosen over smaller ones to reduce the number of attachments. In addition, the roof is constructed of energy-efficient structural insulated panels (SIPs) that can be readily removed as individual units and reused elsewhere.

Classrooms clad with reclaimed redwood siding.

Chartwell School

A NEW HOME FOR OLD WOOD

Atkins, EHDD, and Ausonio all played a role in locating salvaged wood for the project, with the client and architect approving all material samples. Most of the reclaimed wood was purchased from Terra-Mai, a supplier that the architects had dealt with previously. Working with a large reclaimed-wood specialist made it easier to obtain the materials needed to meet project specifications and reduced the need to store materials on site. Wood that needed to be stored on site was kept outside and protected under plastic sheeting.

The U.S. Army Engineer Research and Development Center had worked with local contractors to deconstruct numerous wooden buildings on the former army base. Atkins wanted the new campus to include some of that wood both to reduce the project's carbon footprint and help keep the site's history alive. Unfortunately, much of the wood was coated with lead-based paint. Using funds from the EPA grant, the team was able to work with the Fort Ord Reuse Authority and John Stephens who had developed a mobile, on-site system for removing lead-based paint.

Ultimately, only about 800 board feet of vertical grain Douglas fir from the old barracks was used for interior paneling because its availability did not coincide with Chartwell's construction schedule.

Education

TerraMai provided the remainder of the fir paneling, which had previously been the floor of the former Esprit company headquarters in San Francisco.

In one of the most visually striking examples of reuse, a Monterey Cypress tree trunk, found already cut down in an arborist's yard and sourced through Urban Lumber Jacks, was turned into a 12-foot tall structural column in the atrium entrance to the classroom building.

FIR FOR INTERIOR

DECONSTRUCTED

ORD AND THE

FORMER ESPRIT

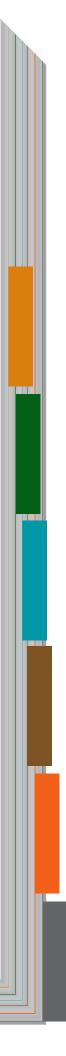
SAN FÃANCISCO.

BARRACKS AT FORT

HEADQUARTERS IN

PANELING CAME

FROM THE


The project also earned the certification from the Collaborative for High Performance Schools and was honored with the California Governor's Economic Leadership Award. In addition, the Chartwell School project and its Design for Deconstruction report helped inspire the EPA's Lifecycle Building Challenge, a competition that honors innovative projects and ideas related to "design for disassembly."

RIPPLE EFFECTS OF REUSE

Chartwell School was the first complete educational campus to be awarded LEED-NC Platinum certification from the U.S. Green Building Council. The project's use of reclaimed materials earned it both LEED credits for resource reuse (MR 3.1 and 3.2), as well as the regional materials credit (MR 5).

The design and construction process benefited from highly qualified team members who were committed to the project's sustainability goals. At EHDD Architecture, sustainability continues to be a leading principle. They have applied the lessons learned on Chartwell School to subsequent projects, particularly material efficiency and design for disassembly.

Although the general contractor, Ausonio, Inc., had never previously worked on LEED or green building projects, Chartwell School took them in a new direc-

tion. The company has since worked on a number of LEED Platinum projects, has been hired as green building consultants and green general contractors, and has used design for deconstruction principles on subsequent projects.

For Chartwell's students, administrators, faculty and wider constituencies, the new campus embodies the community's dual commitments to care for the environment and help children achieve their full potential.

23

Chartwell School

Redwood benches with wood from railroad bridges.

Education

LESSONS LEARNED

DO YOUR HOMEWORK— AND WRITE IT DOWN

When embarking on groundbreaking projects with few precedents, do thorough research and analysis. Make mock-ups when appropriate. Document and publicize research, methods and results, like the Chartwell team did with their Design for Deconstruction report, to help others follow in your path.

TAKE THE LONG VIEW

Give future generations a break and do your part to ensure that the reclaimed materials you are using today will still be usable 50 or 100 years down the line. At Chartwell School, fasteners were used to hang the interior paneling without nails or screws, protecting the quality of the oldgrowth Douglas Fir.

COMMUNICATE EARLY, COMMUNICATE OFTEN

Designing for disassembly and building with reclaimed materials aren't standard practice in the building industry. Early and frequent communication about the project's goals, methods and materials allows for a more collaborative approach and reduces costly mistakes.

CONNECT DESIGN AND VALUES

The most successful green buildings do more than conserve resources. They express the client's hopes for the future. At Chartwell School, the reclaimed materials, design for disassembly and other green building elements speak to the priority placed on creating interactive learning environments and building a sustainable future.

SAY YES TO SUSTAINABLE SCHOOLS

School administrators and boards can sometimes be risk averse, notes Atkins, and can shy away from building green because they fear it will cost more. But Chartwell's new campus-an extraordinary place that significantly advanced the school's mission and elevated its staturecame in 15% under the cost of average school construction in California, Atkins said.

p. 46 Photo: Michael David Rose / MDRP.NET

Chartwell School

LEARN MORE

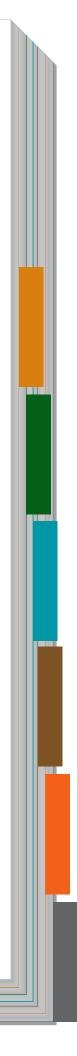
TOP TEN CASE STUDY

aiatopten.org/hpb/overview.

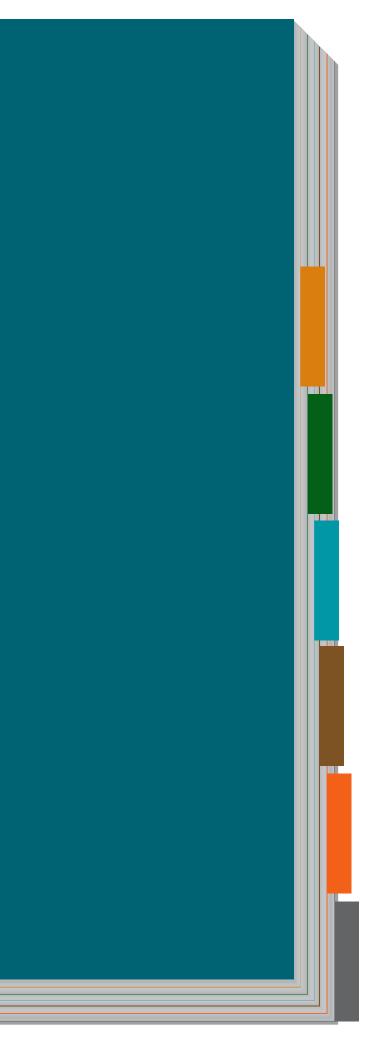
AIA COTE

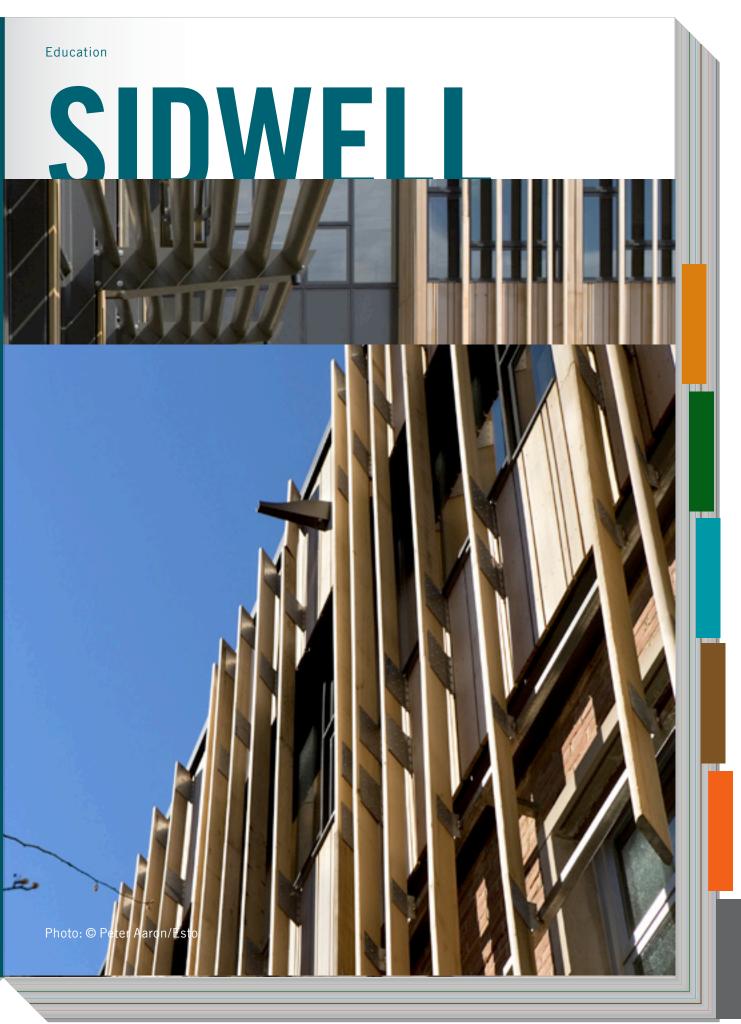
AUSONIO, INC. ausonio.com

cfm?ProjectID=1385


CHARTWELL SCHOOL chartwell.org

DESIGN FOR DECONSTRUC-TION REPORT chartwell.org/UserFiles/File/


Design for Deconstruction.pdf


EHDD ARCHITECTURE ehdd.com

EPA LIFECYCLE BUILDING CHALLENGE lifecyclebuilding.org

Education		Chartwell School					
MATERIAL	ORIGINAL USE	REUSE APPLICATION	SOURCE	SOURCE LOCATION	QTY	REFURBISHMEN'	
Old growth redwood	Wine barrels	Fascia board, interior paneling	Offsite, vendor: Terra Mai	California	5850 Bd ft	Milled	
Clear grain Douglas-fir	Wall paneling & soffits	Fascia board, interior paneling	Offsite, vendor: Terra Mai	San Francisco, CA	2850 Bd ft	Milled	
Old growth redwood	Wine and olive storage barrels	Exterior siding	Offsite, vendor: Terra Mai	Various locations, CA	1171 Bd ft	Milled	
Vertical grain Douglas-fir	Flooring	Millwork	Offsite, vendor: Crossroads Lumber		68 Sq ft	Milled	
100-year-old Douglas-fir	Framing studs from old barracks at Fort Ord	Interior paneling	Onsite, vendor: Pacific Heritage	Seaside, CA	800 Bd ft	Lead paint abatement, Milled	
Clear all heart redwood	Wood trestle from railroad bridge	Millwork	Offsite, vendor: Reclaimed Wood Products Company	Sacramen- to, CA	50 Pieces	Milled	
Redwood			Offsite, vendor: Hayward Lumber		398 Bd ft	Milled	
Asphalt	Paving	Foundation sub base	On-site	On-site	1385 Cu yd	Crushed	
Eucalyptus tree	Tree	Wood framing	Offsite, vendor: Urban Lumber Jacks	Salinas, CA	1 Tree	Refurbished	

Education

Education

SIDWELL FRIENDS SCHOOL

KEY INFO AND REUSE-RELATED PROJECT TEAM MEMBERS

PROJECT NAME Sidwell Friends Middle School

LOCATION

2006

Washington, D.C.

TOTAL PROJECT COST (LAND EXCLUDED) \$28 million (includes central

plant)

YEAR COMPLETED

SIZE

PRIMARY USE K-12 education

CONSTRUCTION TYPE New construction

CERTIFICATIONS LEED-NC Platinum

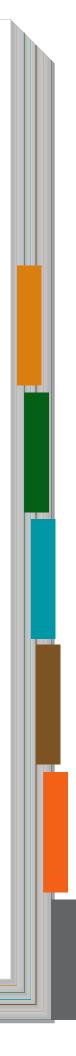
72,500 Sq ft

CLIENT/OWNER Sidwell Friends School

REUSE CONSULTANT Armster Reclaimed Lumber Company, CitiLogs

ARCHITECT KieranTimberlake

51


CONTRACTOR HITT Contracting Inc.

STRUCTURAL ENGINEER **CVM** Engineers

SUSTAINABILITY CONSULTANT GreenShape LLC. Integrative Design Collaborative

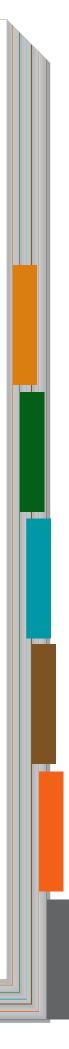
FABRICATOR

Symmetry Products Group, Loewen Windows

SIDWELL FRIENDS SCHOOL BUILDS A BEACON **OF ENVIRONMENTAL STEWARDSHIP**

Sidwell Friends School is a private pre-K through12th grade institution in Washington, D.C. founded in 1883 on Quaker principles. As a prominent institution—and alma mater to several children of U.S. presidents—the school embraced the opportunity to boldly promote sustainability in the design of their Middle School Building's renovation and addition. Drawing upon the Quaker values of environmental stewardship and social responsibility through action, the school set the ambitious goal of achieving LEED NC Platinum certification. It ultimately became the first LEED Platinum K-12 building in the country.

The project scope consisted of renovating the 55-year-old, 33,500-square-foot building and constructing a 39,000-square-foot addition. Material reuse provided a prominent unifying element, aesthetically linking the exteriors of both wings through a reclaimed cedar panel system of vertical fins that protect the interior spaces from excessive heat gain. Reclaimed greenheart, a durable tropical hardwood, flows from the outside decking to the floor of the entry lobby, linking the natural environment outdoors to the learning


From the outset, the Middle School building was intended to serve as a learning tool. Through integration of environmental sustainability lessons into the curriculum and green building tours offered to the public, the project educates students and others about environmental building practices. Reclaimed materials form an important part of this story, providing a tangible statement of the school's commitment to sustainability.

Sidwell Friends School

environment inside.

"THE USE OF RECLAIMED MATERIALS IN HIGHLY VISIBLE AREAS WAS VERY SUCCESSFUL IN THAT IT REALLY DRAWS PEOPLE IN AND GETS THEM EXCITED ABOUT GREEN BUILDING."

- Mike Saxenian, client

Education

DESIGN FOR REUSE HIGHLIGHTS

— The architect, KieranTimberlake, collaborated with sustainability consultant Green-Shape and the client to generate an overall material strategy that balanced conceptual and aesthetic desires with LEED Platinum requirements.

— The design team deliberately used reclaimed materials in highly visible applications, such as the wood panel façade, to emphasize connections to local habitat and demonstrate the school's dedication to environmental stewardship.

— Armster Reclaimed Lumber Company joined the team early, during the design development phase. They offered insight into available types and sources of reclaimed wood as well as provided samples and mockups that played a significant role in detailing. KieranTimberlake originally designed the cedar fins to be 7/8" thick, but at Armster's suggestion, they decreased the thickness to $\frac{3}{4}$ " to reduce cost and waste.

— The bidding process for reclaimed lumber was a "sole sourcing" arrangement, with Armster Lumber as the designated supplier. Armster assumed responsibility for procurement, storage, and transportation of wood prodSidwell Friends School

ucts to the site or the fabricator.

- Several subcontractors were hesitant to procure materials outside of their traditional sources. HITT Contracting was able to alleviate their concerns by purchasing certain reclaimed materials for the subcontractors' use.

- Reclaimed materials include 100-vear-old Western red cedar from wine tanks that form the exterior fins on the facade, greenheart pilings from Baltimore Harbor that provide exterior decking and entry lobby flooring, and old Douglas fir bleachers that gain new life as window trim.

— Over 40,000 board feet of reclaimed wood was incorporated into the project. In total, reclaimed materials represented over 9% of the overall materials costs.

3

Window trim made from high school bleachers.

Education

START EARLY

By considering reuse early in the project, the team benefited from the insight of several consultants as the design developed. Klaas Armster of Armster Reclaimed Lumber Company said that the long time frame gave him and the architects time to work out solutions to potential challenges, such as the appropriate sizes for the façade fins.

BUILD REUSE RELATIONSHIPS

The project team's network of reuse experts-including Green-Shape, Armster Reclaimed Lumber Company and CitiLogs gave them valuable advice on reclaimed lumber that informed the design.

GET SAMPLES AND BUILD MOCKUPS

The design details and specifications benefited from an understanding of material types and qualities. Samples and mockups gave team members a better understanding of technical details, weathering, and how to achieve the team's desired aesthetic.

WASTE NOT

55

The salvaged greenheart pilings from Baltimore Harbor had to be ordered four to five months in advance to allow for adequate drying time. What's more, the team was cautioned that quantities yielded from milling could vary. These conditions led the contractor to be even more iudicious than normal with the wood. According to Kimberly Pexton, HITT's Director of Sustainable Construction, they "didn't have the luxury of being wasteful."

KEEP LOOKING FOR WAYS TO REUSE

While most material reuse elements were incorporated into the design early, some materials like the Douglas fir window trim emerged during the construction documents phase. Armster found the fir, which was reclaimed from high school bleachers. The wood had drill holes every four feet where the bleachers had been bolted, but its history and look suited the project.

UNDERSTAND TRADE-OFFS

When considering a reclaimed material, be sure to understand both the short- and long-term costs. In some cases, the client paid a premium for the reclaimed wood materials; however, the durable wood will allow the client to avoid the cost and labor of constant upkeep.

SHOW IT OFF

Reclaimed materials are used to their best advantage when they are prominently featured. The materials relay the importance of sustainability to an institution by providing a strong visible (and often tactile) connection to the earth. Sidwell's sustainability-influenced curriculum and green building tours reinforce this connection and inspire those within the Sidwell Friends community and beyond. They also reinforce the school's role as an environmental steward.

54

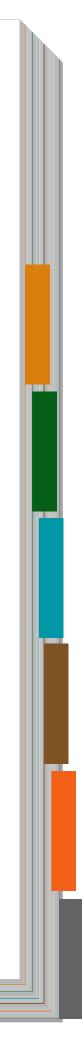
Sidwell Friends School

LEARN MORE

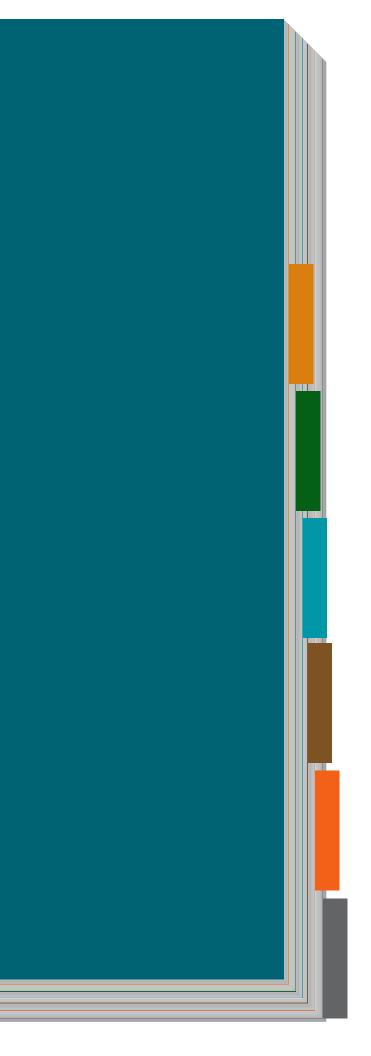
ARMSTER RECLAIMED LUMBER COMPANY woodwood.com

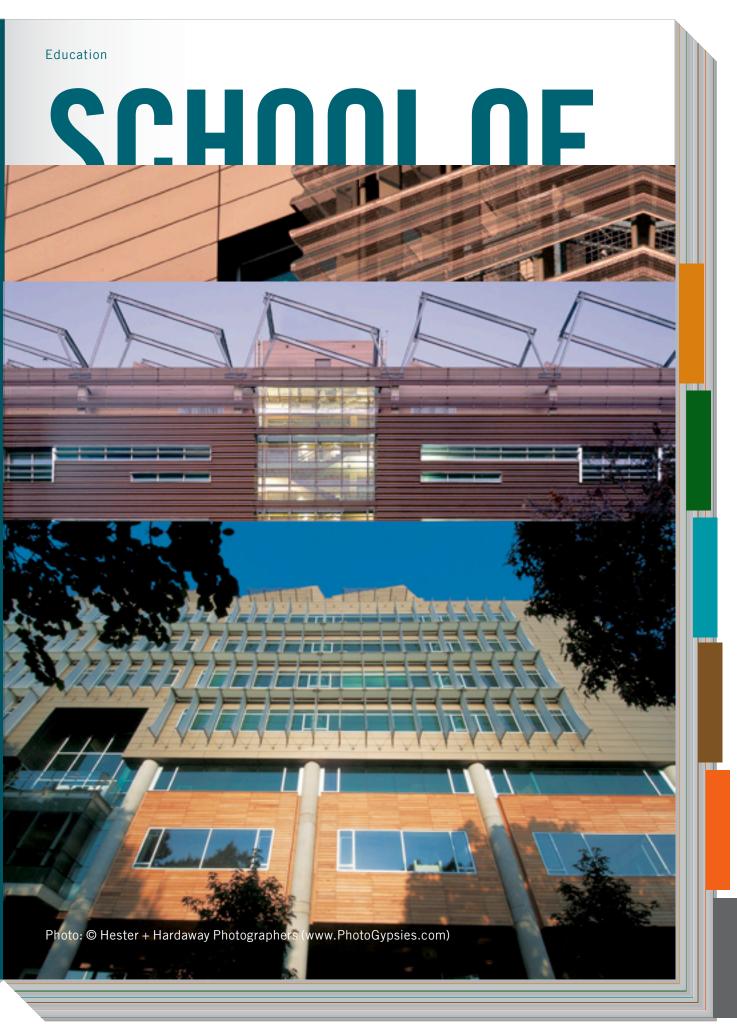
GREENSHAPE greenshape.com

HITT CONTRACTING INC. hitt-gc.com

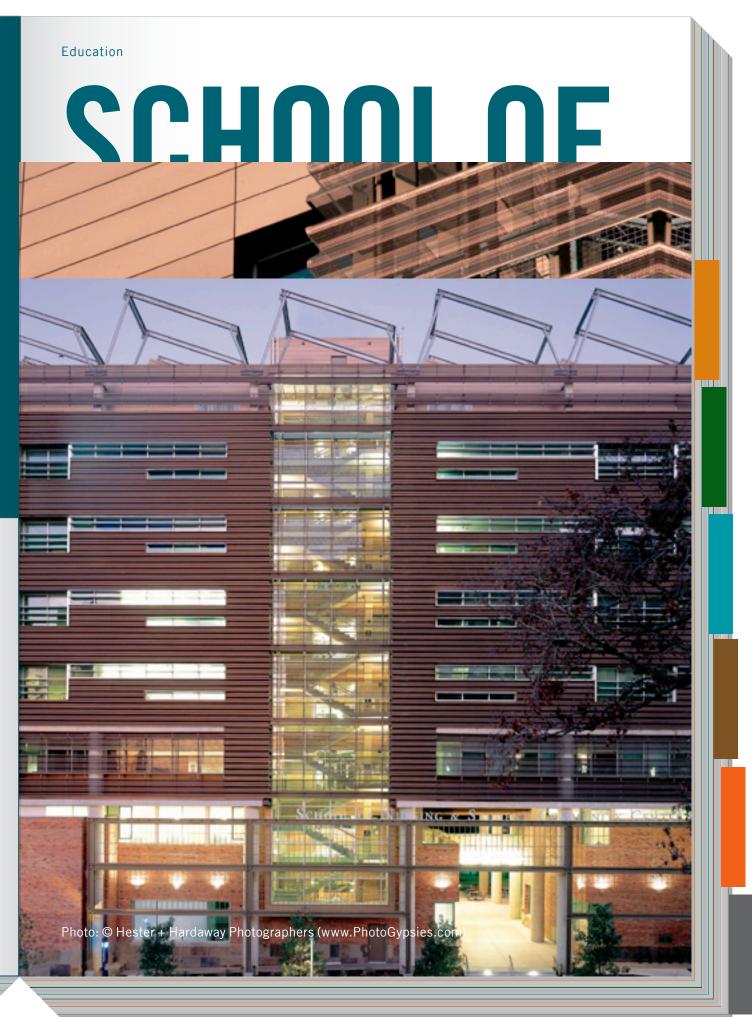

KIERANTIMBERLAKE kierantimberlake.com

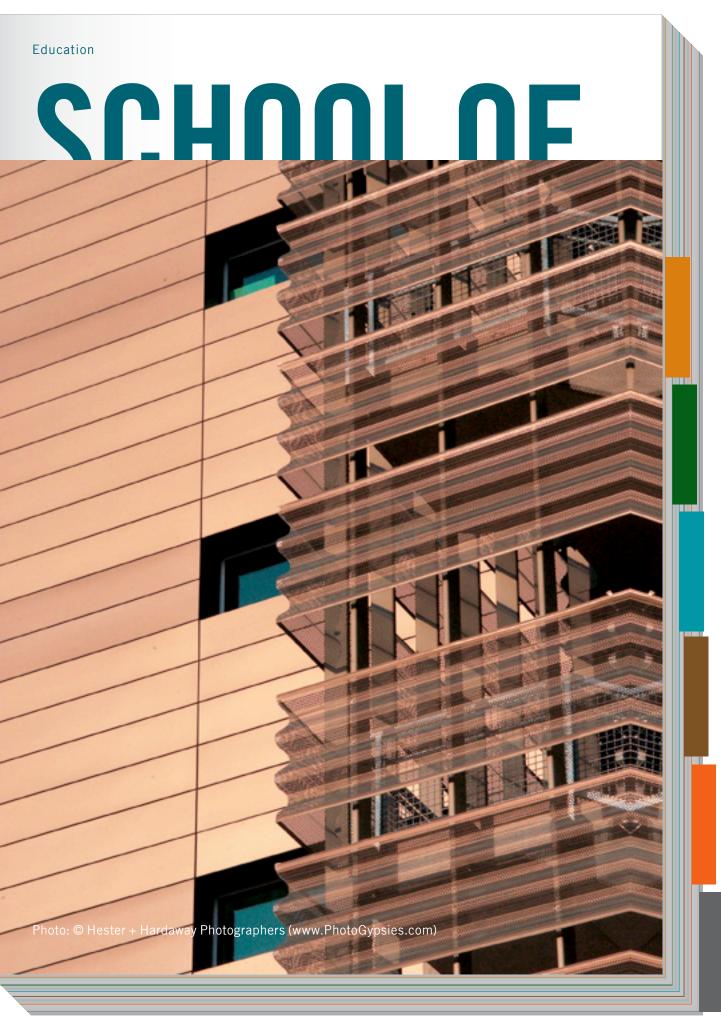
SIDWELL FRIENDS SCHOOL, MIDDLE SCHOOL BUILDING sidwell.edu/about_sfs/green-


buildings/ms-green-building/ index.aspx


USGBC PROJECT PROFILE usgbc.org/ShowFile. aspx?DocumentID=3943

p. 54 Photo: © Peter Aaron/Esto


Education		Sidwell Friends School							
MATERIAL	ORIGINAL USE	REUSE APPLICATION	SOURCE	SOURCE LOCATION	QTY	REFURBISHMENT			
Western Red Cedar	Wine tanks	Fins for exterior cladding	Offsite, vendor: Armster Reclaimed Lumber Co.	Erie, PA	30,000 Bd ft	Milled			
Green Heart	Pilings in Baltimore Harbor	Exterior decking, interior flooring	Offsite, vendor: Armster Reclaimed Lumber Co.	Baltimore, MD	1,000 Sq ft	Milled			
Green Heart	Pilings in Baltimore Harbor	Exterior decking, interior flooring	Offsite, vendor: Armster Reclaimed Lumber Co.	Baltimore, MD	2,000 Bd ft	Milled			
Douglas-fir	High school bleachers	Exterior window trim, sills, and jam covers	Offsite, vendor: Armster Reclaimed Lumber Co.		6,000 Bd ft	Milled			
Stone		Exterior masonry	Offsite, vendor: Paul W. Steinbeis- er Inc.						



58

Education

Education

SCHOOL OF NURSING

KEY INFO AND REUSE-RELATED PROJECT TEAM MEMBERS

PROJECT NAME University of Texas School of Nursing & Student Community Center

CONSTRUCTION TYPE New construction

YEAR COMPLETED 2004

LOCATION

Houston, TX

PRIMARY USE Higher education, Laboratory

TOTAL PROJECT COST (LAND

LEED-NC Gold

195,000 Sq ft

SIZE

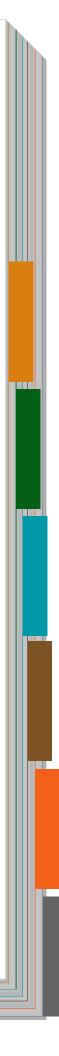
EXCLUDED) \$57 million

CLIENT/OWNER University of Texas Health Science Center at Houston

59

CERTIFICATIONS

SUSTAINABILITY CONSULTANT Center for Maximum Potential Building Systems


ARCHITECT BNIM and Lake | Flato Architects

STRUCTURAL ENGINEER Jaster Quintanilla & Associates

DECONSTRUCTION CONTRACTOR

D. H. Griffin of Texas, Inc.

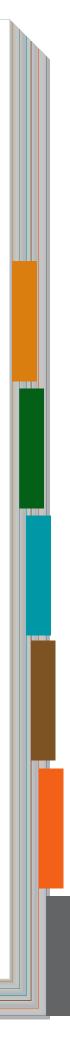
CONSTRUCTION MANAGER Jacobs Vaughn

UNIVERSITY OF TEXAS BUILDS NURTURING FACILITY FOR ITS NURSING SCHOOL

For the University of Texas Health Science Center at Houston's new School of Nursing and Student Community Center, Dean Patricia Starck wanted a building that was "nurturing"—a building that would foster human well-being and be easier on the environment. Inspired by Dean Starck's vision, the project team committed to creating a sustainable building from the outset. From its classrooms to laboratories, the building acts as a learning tool. It teaches its users about sustainability both inside and out, according to architect David Lake of Lake | Flato Architects. Completed in 2004, this was the University's first LEED certified building.

Material reuse emerged as a strategy in the early design phases. An existing brick building onsite inspired the architectural team of BNIM and Lake | Flato to incorporate reclaimed brick into their design. The brick deconstructed from the original building was ultimately unsuitable for the new facility, but the team went on to source reclaimed brick as well as sinker cypress logs from regional sources. With the engaging variegated character of the brick and the deep rich coloring of the cypress siding, the façade sets the tone for a

School of Nursing


nurturing building where the next generation of caregivers is trained.

Reclaimed brick helps frame view to exterior courtyard.

"IT WAS A GREAT **OPPORTUNITY TO** SHOW HOW A RECLAIMED MATERIAL STRATEGY CAN HAVE APPLICATION INALARGE PROJECT, PARTICULARLYIN **AN INSTITUTIONAL** SETTING LIKE A UNIVERSITY."

— Gail Vittori, sustainability consultant

Education

DESIGN FOR REUSE HIGHLIGHTS

— Several companies played a role in the reuse effort. The architects drafted the deconstruction specifications for the original building and sourced the sinker cypress logs (logged timbers that sank to the bottom of a river). Along with the Center for Maximum Potential Building Systems (CMPBS), the architects researched regional sources for reclaimed bricks.

— Though the architects had worked with reclaimed materials before, they had never written a deconstruction specification. They took a pragmatic approach, building in contingencies where appropriate. When they couldn't identify how a component was put together, they wrote instructions for the most likely conditions. For instance, a specification could provide instruction for a bolted connection and a welded connection. Influenced by this clarity, the final bids from the subcontractors were quite competitive.

— The brick from the original building inspired the idea of reclaimed materials, however it could not be easily removed and so could not be reused on this project. Additional brick was sourced offsite using suppliers with whom the architects had worked with previously. The suppliers were familiar

62

School of Nursing

with their needs, particularly in terms of quality, which eased the process.

— As a public institution, the University did not want a single source supplier for any of the materials. The team wrote the specifications detailing the quality of material needed. They indicated that the contractor could use material sourced by the initial vendor or present the equivalent.

— The team reached out to the brick supplier during the design process, giving him enough time to source the quantities and quality needed. New brick tends to be monotone in color. Older brick has a variation in color and texture, which the architects were drawn to. To ensure the reclaimed bricks met the specifications, the supplier sent sample bricks to the team for review.

— The brick specifications required that the supplier collect the true count. In other words, broken bricks could not be considered in the overall count needed. This assured that the majority of the bricks delivered were usable.

3

p. 61 Photo: © Hester + Hardaway Photographers (www.PhotoGypsies.com)

Education

START EARLY

Defining goals early allows time for creating alternate strategies if conditions change. When the original brick proved unusable, the project team had enough time to engage an offsite vendor to source enough brick for the project.

BE SMART ABOUT DECONSTRUCTION

The architects knew that there Salvaged materials are not were several unknowns with the perfect but there can be beauty condition of the materials in the original building. a uniform look. The project As a result, they wrote the deconstruction spec with conteam welcomed the distinctive tingencies. character of the reclaimed brick.

BUILD REUSE RELATIONSHIPS

Given that both architecture firms had incorporated reclaimed materials into other projects, they knew reuse vendors, such as the brick supplier, who were familiar with the quality of materials they were looking for. Making use of these kinds of connections his can save time and money.

WORK AROUND MULTIPLE **VENDOR REQUIREMENTS**

Public buildings often have restrictions against sole sourcing. The team worked around the University's restrictions by specifying that the contractor could source from the vendor listed or the equivalent, as long as the material met the given requirements.

EMBRACE BEAUTY

IN IMPERFECTION

in that imperfection. New

brick would have provided

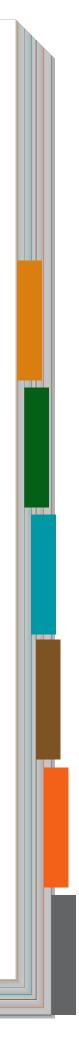
School of Nursing

LEARN MORE

UNDERSTAND TRADE-OFFS

When considering a reclaimed material, be sure to understand both the short- and long-term costs. Rich in color, the cypress siding provides a unique beauty to the project. However, its post-occupancy maintenance cost has been less than ideal.

AIA COTE TOP TEN CASE STUDY aiatopten.org/hpb/overview. cfm?ProjectID=444

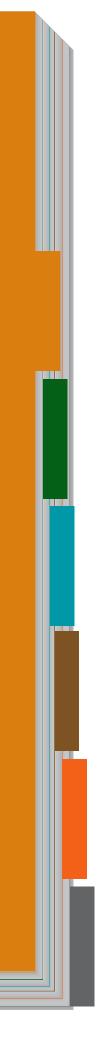

BNIM ARCHITECTS bnim.com

LAKE | FLATO ARCHITECTS lakeflato.com

SCHOOL OF NURSING AND STUDENT COMMUNITY CENTER son.uth.tmc.edu

"YOU'RE STRIVING FOR A BUILDING THAT IMMEDIATELY HAS AN INTRINSIC **CHARACTER** BECAUSE OF THE NATURE OF THE MATERIALS."

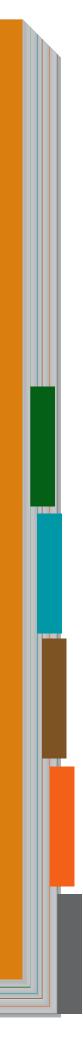
- David Lake, architect

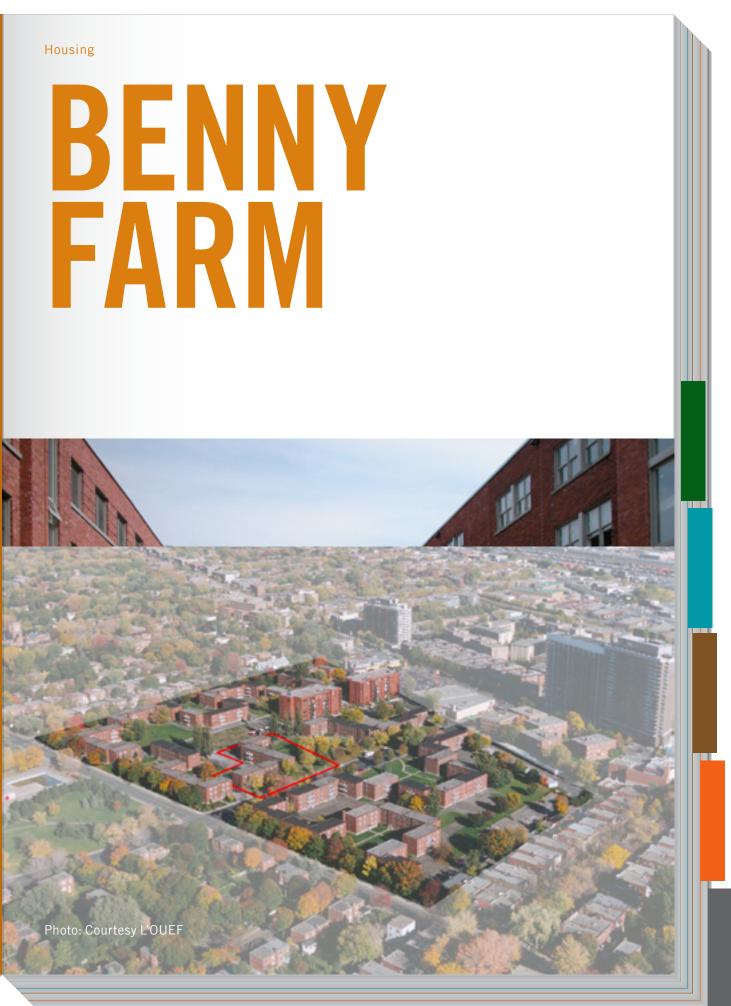


Education						
MATERIAL	ORIGINAL USE	REUSE APPLICATION	SOURCE	SOURCE LOCATION	QTY	REFURBISHMENT
Reclaimed Brick	Exterior masonry in 19th century warehouse	Exterior masonry	Offsite	San Antonio, TX	120,000 Bricks	
Reclaimed Sinker Cypress	Trees	Exterior siding	Offsite, vendors: Frenchman Contractors & Riverfront Lumber	Mississippi River, TX		Kiln dried, Milled

HOUSING

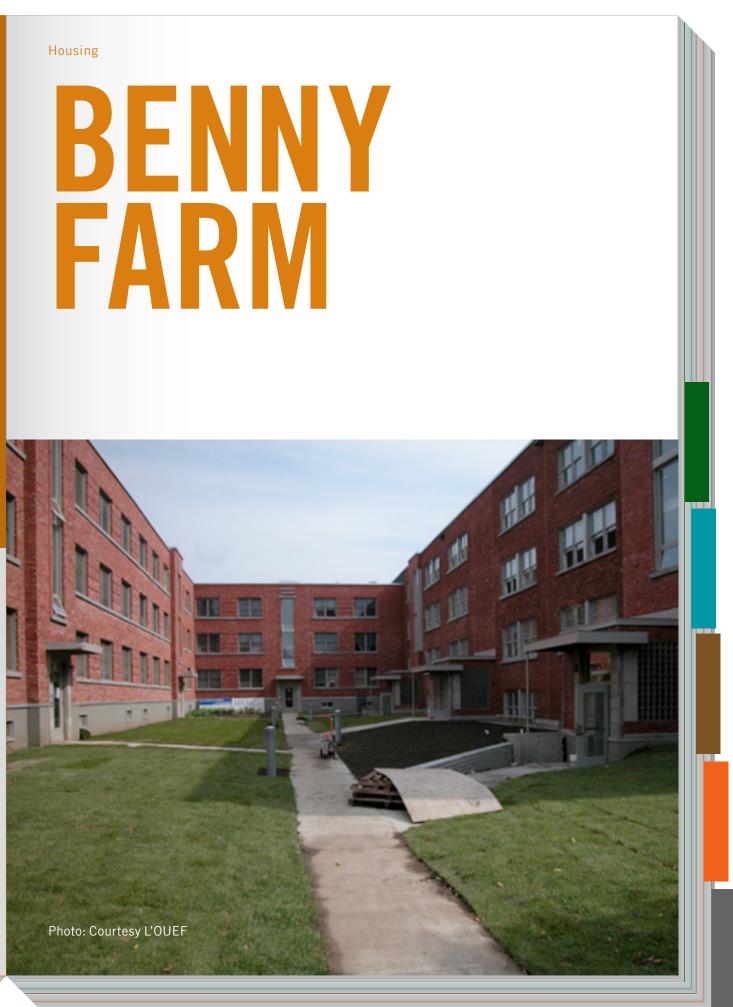
69 Benny Farm Eastern Sierra House 77




Housing

"WE OFTEN PROMOTE THESE MATERIALS BECAUSE THEY'RE OF A HIGHER QUALITY… OR THEY JUST HAVE THE CHARACTER THAT WE'RE AFTER."

—David Arkin, architect, Eastern Sierra House


Reclaimed materials have a long history of use in custom-designed single-family homes. Reuse is relatively straightforward when sourcing basic components, such as a reclaimed wooden door or a kitchen sink. The two projects featured in this section make the case for expanding beyond the basics of reuse. In Eastern Sierra House, a nimble team of architects and a builder help a sustainability-minded client incorporate unusual materials such as airplane flaps and ailerons in addition to more traditional elements such as reclaimed lumber. The architects of Benny Farm used simple reclaimed materials, such as bricks and radiators, to bring more life and texture to an affordable multifamily residential development. Though very different in scale and use these two projects represent signature models of housing infused with a deeper and more tangible sense of place.

FAR

Housing

RF **NNY** FΔ

KEY INFO AND REUSE-RELATED PROJECT TEAM MEMBERS

PROJECT NAME Benny Farm

YEAR COMPLETED

PRIMARY USE

Multi-unit housing

CONSTRUCTION

New construction

LOCATION

2006

TYPE

69

TOTAL PROJECT COST (LAND EXCLUDED) \$5 million CDN

STRUCTURAL

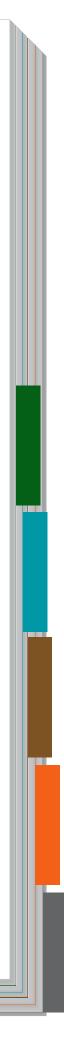
Montreal, QC, Canada CERTIFICATIONS

Novoclimat certified

SIZE 70,460 Sq ft

CLIENT/OWNER Z.O.O. (Zone of Opportunity) Housing Cooperative

ARCHITECT L'OEUF


Jan Vrana

MEP Associes

CONTRACTOR Edilbec Construction

ENGINEER

Martin Roy et

REHAB OF POST-WAR DEVELOPMENT PROVIDES SUSTAINABLE MODEL OF **AFFORDABLE HOUSING**

The 18-acre site at Benny Farm, in Montreal, was originally developed in the 1940s to provide housing for WWII veterans and their families. Its design incorporated "Garden City" concepts, such as abundant green spaces, and progressive ideas about social housing. Over time, residents formed a tight knit community in which neighborhood associations and recreational groups thrived. When plans to replace the existing housing with a new high-density, market-rate development were unveiled in the early 1990s, the community rallied to promote an alternative that would preserve the complex's unique socio-cultural heritage. After years of negotiations between the community and the government, a redevelopment plan was adopted in 2003.

The architecture firm L'OEUF, which had a long history of involvement in the community, was hired by Z.O.O. (Zone of **Opportunity**) Housing Cooperative to redevelop 46 units across two buildings on the site (several other buildings on the site, not covered by this case, were renovated/ constructed by various architecture firms, including L'OEUF). L'OEUF proposed a plan that pri-

and affordability. Ultimately, over 35% of the original structures across the 18-acre site were rehabilitated, and substantial quantities of materials from the dismantled buildings were incorporated into new construction and renovated buildings throughout the site. Reuse was part of a larger vision with multiple strategies intended to provide environmental, economic and social benefits.

Benny Farm


oritized preservation, reclamation

Reclaimed wood forms part of exterior wall assembly.

"WHEN WE TOOK A POSITION OF NO DEMOLITION, IT WAS A SOCIAĹ POSITION."

- Danny Pearl, architect

Housing

DESIGN FOR REUSE HIGHLIGHTS

— With both public and private entities involved, deconstruction often was undertaken by the government and their contractors rather than the project team. L'OEUF provided clear instructions about which materials to save and how to reclaim them.

— All materials for reuse came from the site. Prior to construction, all materials were stored on site. Wood flooring was stored in shipping containers while radiators were locked in buildings not deconstructed. The contractor took responsibility for all materials except the brick.

- Brick from deconstructed buildings was dismantled and cleaned according to a specification developed by L'OEUF. Mortar used in older brick construction tends to come off more easily than mortar used today. The team was able to easily knock down and separate the brick.

— The contractor was concerned about the lack of guarantee on the brick. The project team sent samples to a lab to be tested. Results indicated that the water absorption rate and strength in old brick was better than new brick, so the client accepted its use.

Benny Farm

— To create more harmony between the new buildings and existing construction, L'OEUF used reclaimed brick on facades on the main street and new brick was used on side and rear facades. L'OEUF created a design mixing brick from several buildings to create an interesting pattern.

- Social housing budgets generally accommodate vinyl for flooring and electric baseboards for heating. Reclaimed wood flooring provided a higher quality look that wouldn't have been affordable as new. Reconfigured radiators worked well with the geothermal heating system and save more energy than electric heating.

- The project's sustainability features, including reuse, are promoted using signs at the site, as well as through reports and green building workshops.

- Reclaimed materials include brick used as part of the exterior façade, glass block at accessible entry vestibules, and wood flooring and radiators repurposed for the same use.

— Over 50% of both the brick and glass block were successfully recovered from several deconstructed buildings.

23

Housing

LINK THE OLD WITH THE NEW

Not only does reuse provide a tangible link with the community's past, the design of the brick façade provides a visual language to link old and new construction.

OLD MATERIALS CAN WORK IN HIGH PERFORMANCE **ENVIRONMENTS**

Reclaimed materials and components can work with modern building performance goals. By installing new electronic systems in reclaimed radiators that are served by a geothermal heating system, the team was able to provide an affordable yet high quality heating solution. The reclaimed brick was tested and found to be stronger and less water absorbent than new brick.

DO MORE WITH LESS

Reclaimed materials can provide a means to incorporate high quality materials in projects that couldn't afford the equivalent quality in new materials.

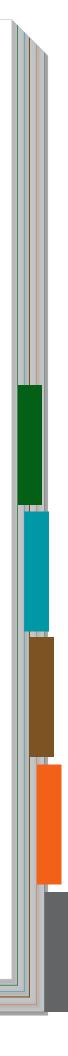
KNOW YOUR STUFF

Knowing the properties of a material can facilitate reuse. Brick provided an ideal reuse opportunity in part because older construction processes meant the mortar was easier to remove and required less cleaning.

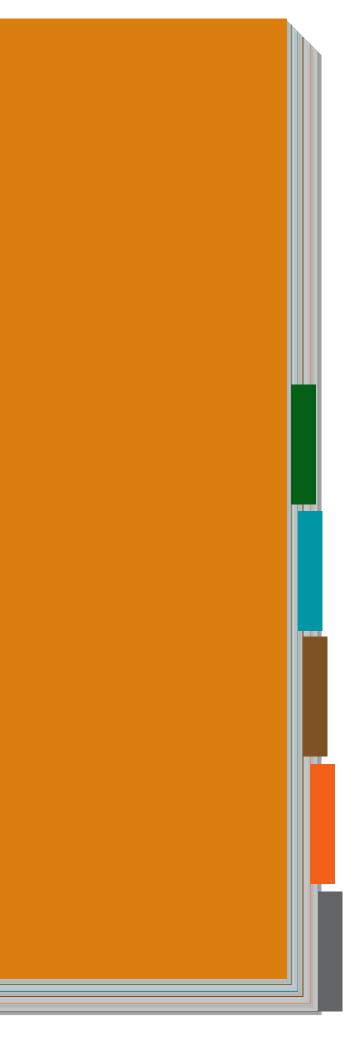
Benny Farm

LEARN MORE

HOLCIM FOUNDATION FOR SUSTAINABLE CONSTRUC-TION holcimfoundation.org


L'OEUF loeuf.com

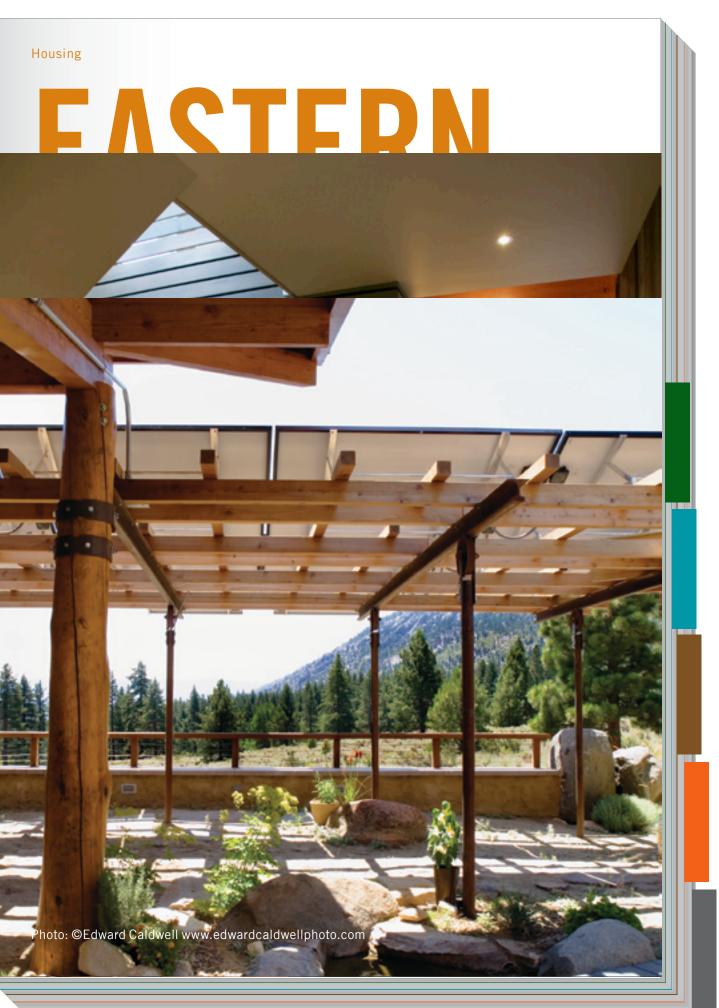
Z.O.O. zoneofopportunity.tripod.com

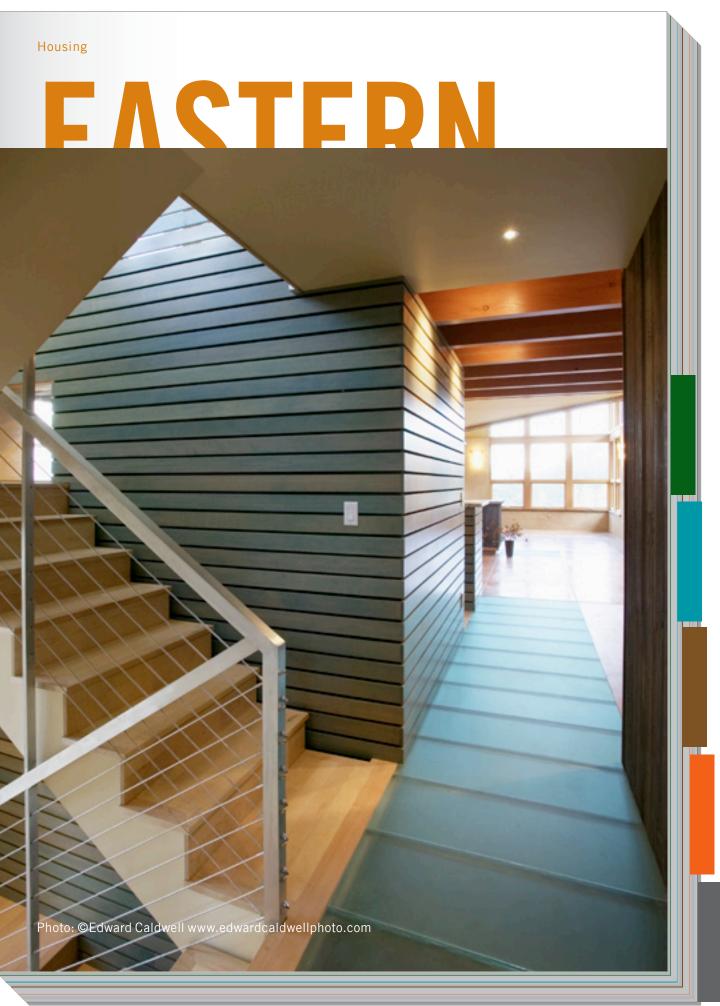


Brick from dismantled buildings.


p. 71, 73 Photos: Courtesy L'OUEF

Housing					
MATERIAL	ORIGINAL USE	REUSE APPLICATION	SOURCE	SOURCE QTY LOCATION	REFURBISHMENT
Brick	Exterior masonry walls	Exterior masonry walls	On-site	On-site	Cleaned
Glass block	Exterior facade	Exterior facade	On-site	On-site	N/A
Wood strapping	Exterior wall assembly	Exterior wall assembly	On-site	On-site	N/A
Radiators	Radiators	Radiators	On-site	On-site	Refinished and retrofitted
Wood flooring	Wood flooring	Wood flooring	On-site	On-site	Refinished





V W

Housing

EASTERN HOUSE

KEY INFO AND REUSE-RELATED PROJECT TEAM MEMBERS

PROJECT NAME Eastern Sierra House **TOTAL PROJECT** COST (LAND EXCLUDED) Undisclosed

Engineers

LOCATION Northwestern Nevada

SIZE 2,998 Sq ft

YEAR COMPLETED

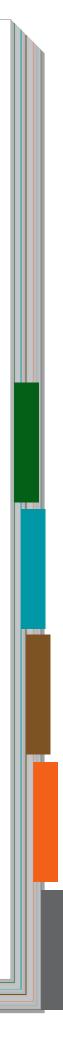
PRIMARY USE Single-family residential

CONSTRUCTION TYPE New construction

(main house), 452 Sq ft (guest house)

> **CLIENT/OWNER** Suzanne Johnson

ARCHITECT Arkin Tilt Architects


CONTRACTOR Sage Design Build

77

2004

STRUCTURAL ENGINEER Peak Consulting

ΡΗΟΤΟ DOCUMENTATION Ed Caldwell

IN NEVADA'S HIGH DESERT. **INVENTIVE REUSE GIVES RISE TO DISTINCTIVE DWELLING**

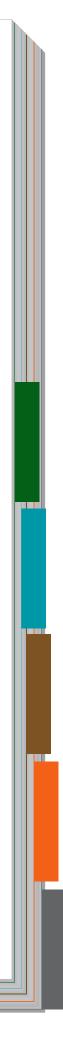
Interested in developing a house that could be a canvas for high level sustainability, Suzanne Johnson purchased land just east of the Sierra Nevada Mountains. Johnson wanted a house that would tread lightly on the earth during construction and use and that would be healthy to live in. Johnson, together with Arkin Tilt Architects and Sage Design/Build, created a house that maximizes solar design elements. It also incorporates an impressive number of other sustainable systems including green roofs and insulated concrete form and straw bale walls.

The decision to integrate material reuse was in many respects intuitive to the sustainable design process. Material reuse can divert waste, reduce raw material extraction and manufacturing, and reduce the risk of off-gassing chemicals in the home. A wide diversity of common and not-so-common reclaimed materials—from wood doors to steel railroad tracksplayed into the team's creativity and inventiveness.

Johnson, her architects and her general contractor were all active in identifying and sourcing materials. They speak as fondly of the process of design and construction as of the final product. The

Eastern Sierra House

end result is a highly acclaimed model of sustainable design in which reclaimed materials visibly articulate a depth of character that resonates for the client and all who visit the house.



Used airline flaps were repurposed as garden shade fins.

- Suzanne Johnson, client

Photo (above): Courtesy Arkin Tilt Architects

Housing

DESIGN FOR REUSE HIGHLIGHTS

— Arkin Tilt kept their drawings loose so that the design could accommodate the inherent variability of reclaimed materials. This flexibility allowed them to adapt the design as needed.

— For some design elements, they hoped to incorporate reclaimed materials but hadn't identified a material. In such cases, a "skeleton" was inserted in the drawings to indicate the approximate material size and function. For example, horizontal shade fins were indicated on the greenhouse exterior. It was not until later in the project that contractor Rick Walters recognized that specific airplane flaps and ailerons could indeed be used.

— Reclaimed materials were sourced throughout the project's design and development stages by the client, architects and contractor. The team kept a running list of items needed and communicated regularly to discuss their progress.

— In addition to reuse stores, the team used the Internet to find materials. Nontraditional, industrial sources such as a mining equipment company, an airplane salvage vard and a railroad salvage yard also yielded valuable reclaimed materials.

Eastern Sierra House

— An avid glider pilot, Walters was well connected to the local flying community. In addition to the airplane flaps, he also sourced wood from a deconstructed hangar. The wood was milled for several applications including ceiling beams, trim, framing, and decorative "barn wood" finishes.

- Building inspectors requested confirmation of the structural capacity of certain reclaimed materials used for structural purposes. Arkin Tilt had such applications certified by the structural engineer.

- Reclaimed materials include maple schoolhouse flooring, vinegar vat fir milled into ceiling finish, steel railroad tracks as trellis beams, metal mining screens that form part of custom light fixtures, and airplane flaps that were modified into greenhouse shade fins.

— Over 7,000 board feet of various types and sizes of reclaimed wood were used. Five steel railroad rails, 44 airplane flaps and ailerons, and 50 panels of glass (used in the trombe wall) also found new life in this project.

3

Housing

DEVELOP A SHARED VISION OF REUSE

With different perspectives united around a common vision of reuse, the entire team participated in identifying and sourcing reclaimed materials. Using their respective networks, they each brought to the table materials that others on the team might not have thought of.

COMMUNICATE AND COLLABORATE

Since multiple team members were engaged in the reclaimed materials search, it was important to maintain regular communication across the project team. Team members kept track of each other's progress and collaborated on ways to use unique materials.

KNOW WHEN TO SAY NO

The team's nimbleness in evaluating and incorporating materials as they were identified greatly facilitated the reuse process. But David Arkin and Anni Tilt caution that working with reuse requires a keen aesthetic eye and an ability to say no to items that do not augment the design. Evaluating the viability of a reclaimed material needs to include not only aesthetics but also cost, character and refurbishment needs.

81

BE OPEN TO NONTRADITIONAL MATERIALS

Though easy to visualize how a used door or flooring could be reused in a residential application, nontraditional materials can also find use in such settings. Airplane flaps molded into shade fins and steel railroad tracks employed as trellis beams provide striking visual examples.

Eastern Sierra House

LEARN MORE

AIA COTE TOP TEN CASE **STUDY**

aiatopten.org/hpb/overview. cfm?ProjectID=434

ARKIN TILT ARCHITECTS arkintilt.com

"REDUX: DESIGNS THAT REUSE, RECYCLE, AND REVEAL"

Jennifer Roberts, Gibbs Smith, Publisher (2005)

"VIRTUAL TOUR: JOHNSON HOME" youtube.com/watch?v=mgUCAzt SyZg&feature=player_embedded

Metal mining screens provide shroud for light sconces.

Photo (above): courtesy Arkin Tilt Architects

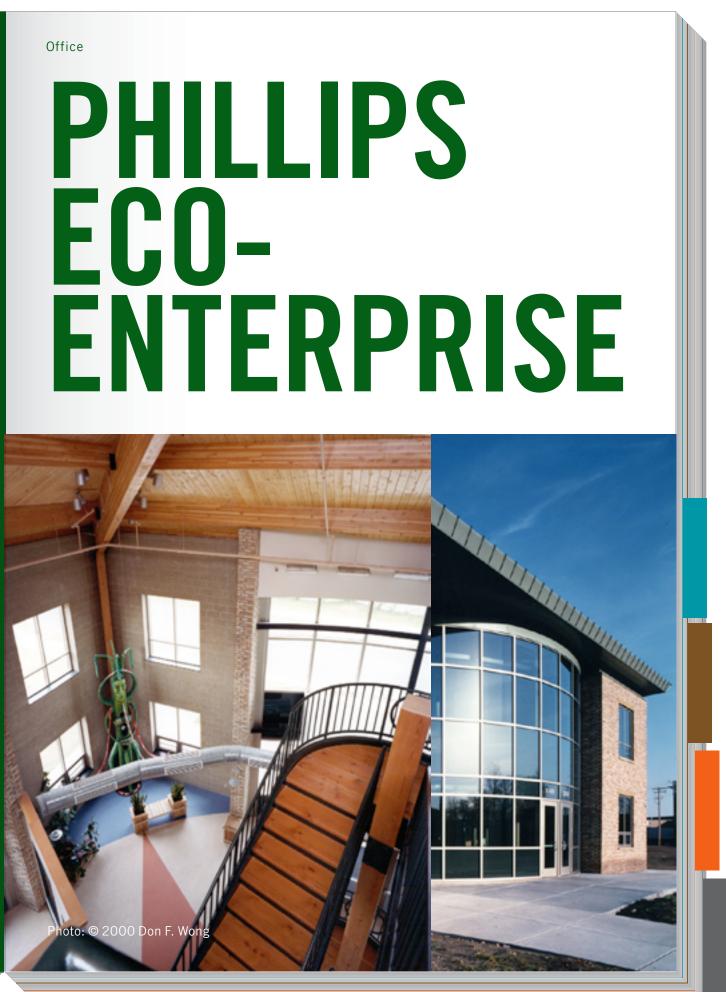
MATERIAL	ORIGINAL USE	REUSE APPLICATION	SOURCE	SOURCE LOCATION	QTY	REFURBISHMENT
Wood	Airport Hangar Trusses	Ceiling beams, interior paneling	Offsite, vendor: Soaring Club	Nevada	1370 Bd ft	Milled
Fir wood	Heinz Vinegar barrel staves	Ceiling paneling	Offsite, vendor: Recycled Lumber Works	Ukiah, CA	420 Sq ft	
Wood		Millwork	Offsite, vendor: Jefferson Recycled Wood Works	McCloud, CA	300 Bd ft	
Douglas-fir Tree	N/A	Trellis and columns	On-site	On-site	1 Tree	Cut-to-size
Maple flooring	Floor decking	Wood flooring	Offsite, vendor	Berkeley, CA	400 Sq ft	Refinished
Salvaged fir timbers		SIP splines	Offsite, vendor: Pioneer Millworks	Farming- ham, NY	2270 Bd ft	N/A
Short fir timbers		Joists	Offsite, vendor: Jefferson Recycled Wood Works	McCloud, CA	3020 Bd ft	N/A
Redwood		Wood trim	Offsite, vendor: Recycled Lumber Works	Ukiah, CA	350 Bd ft	Milled
Wood doors	Interior doors	Interior doors	Offsite, vendor: Urban Ore	Berkeley, CA	2 Doors	Modified, Refurbished
Wood doors	Exterior door	Exterior door	Offsite, vendor: Whole House Building Supply	East Palo Alto, CA	1 Door	Refinished
Metal door	Interior door	Interior door	Offsite, vendor: This and That Salvage	San Pablo, CA	1 Door	N/A

Housing	Eastern Sierra House								
MATERIAL	ORIGINAL USE	REUSE APPLICATION	SOURCE	SOURCE LOCATION	QTY	REFURBISHMENT			
Wood doors	Interior Doors	Interior doors	Offsite, donation	Berkeley, CA	4 Doors	Refinished			
Window	n/a	Window	Offsite, vendor: window man- ufacturer	Berkeley, CA	1 Window	N/A			
Explosion proof safety light fixture	Light fixture in mine	Interior lighting	Offsite, vendor: Lund's Used Mining Equip.	Berkeley, CA	1 Unit	Retrofitted			
Steel posts		Trellis support	Offsite, vendor: Gilman Salvage	Berkeley, CA	6 Posts	N/A			
Steel track cart wheels	Fruit cart wheels	Trellis support	Offsite, vendor: Lund's Used Mining Equip.	Mound House, NV	4 Wheels	N/A			
Steel track cart wheels	Ore cart wheels	Trellis support	Offsite, vendor: Lund's Used Mining Equip.	Mound House, NV	2 Wheels	N/A			
1906 steel railroad track	Railroad track	Trellis beams	Offsite, vendor: K&N Railroad Salvage	Stockton, CA	100 Lin ft	N/A			
Glass panels		Trombe Wall	Offsite, vendor: Urban Ore	Berkeley, CA	50 Panels 250 Sq ft	N/A			
Metal screen	Mining screen	Light shroud for interior lighting	Offsite, vendor: Lund's Used Mining Equip.	Mound House, NV		Refabricated			
Aluminum	Airplane ailerons + flaps	Greenhouse shade fins	Offsite, vendor: Aircraft Part Salvage	Northern California	44 Units	N/A			
Aluminum	Cessna aircraft stabilizer	Shelf	Offsite, vendor: Aircraft Parts Salvage	Northern California	1 Unit	Cut-to-size			
83									

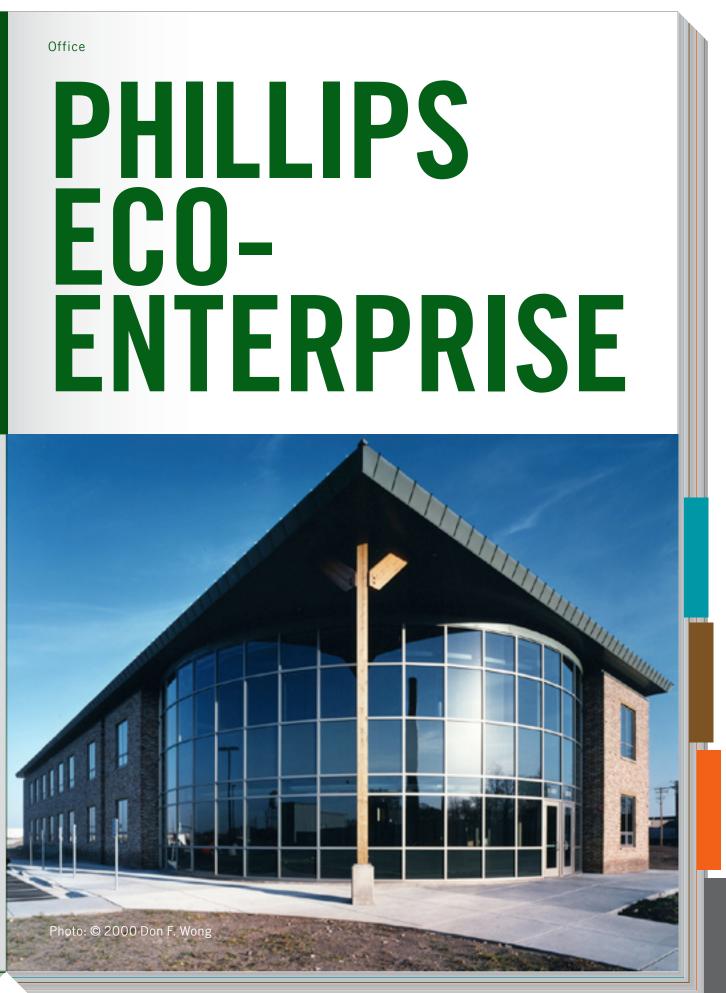
OFFICE

Phillips Eco-Enterprise Center Alberici Corporate Headquarters

89 97



"IF WE COULD REUSE" SOMETHING, WE DID." —Thomas Taylor, client/team leader,


Alberici Corporate Headquarters

As the nexus of an organization's operation, an office headquarters can be an incubator and communicator of the organization's beliefs and goals. For the organizations profiled in this section, reusing materials demonstrated their respect for the project site's historical and cultural context. Prominent reclaimed materials such as steel crane rail beams helped Alberici Redevelopment Corporation's headquarters set the tone for a construction company moving toward a sustainability-based practice. The material reuse in the Phillips Eco-Enterprise <u>Center</u> helped give physical shape to a pioneering project in the aftermath of a long environmental justice battle. Always part of larger green building strategies, material reuse in both projects symbolizes the commitment of the clients and their project teams to an optimistic vision of a sustainable future.

Office

Office

Office

PHILLIPS ECO-**ENTERPRISE**

KEY INFO AND REUSE-RELATED PROJECT TEAM MEMBERS

PROJECT NAME Phillips Eco-Enterprise Center

TOTAL PROJECT

LOCATION Minneapolis, MN

YEAR COMPLETED 1999

PRIMARY USE Commercial office, Industrial

CONSTRUCTION TYPE New construction COST (LAND EXCLUDED) \$6 million

CERTIFICATIONS

Energy Star Rated

2008 & 2009

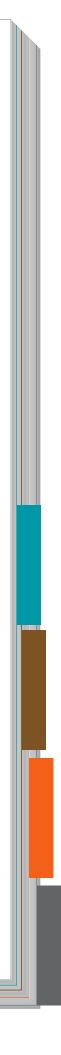
SIZE

CLIENT

LHB, Inc.

64,000 Sq ft

The Green Institute


PROJECT ARCHITECT LHB,Inc.

89

PRE-DESIGN ARCHITECT Sirny Architects

CONTRACTOR Kraus-Anderson

STRUCTURAL ENGINEER

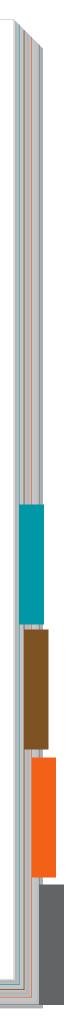
PIONEERING SUSTAINABLE BUSINESS HUB EMERGES IN AFTERMATH OF ENVIRONMENTAL JUSTICE BATTLE

In 1999, the Green Institute opened the Phillips Eco-Enterprise Center (PEEC), a building that provides office and manufacturing space to community-oriented, environmentally conscious businesses. The Green Institute arose from an environmental justice movement to prevent the construction of a garbage transfer station in Phillips, an economically challenged, environmentally degraded neighborhood in Minneapolis. Years of protest led the state to abandon the proposed project even though relocation and demolition had already begun. The movement's organizers founded the Green Institute to channel the momentum from the protest effort into a positive economic engine, based on environmental and social activism, for the neighborhood.

When the time came to construct a headquarters facility that would also serve as a green business center, the organization was determined to "walk the talk" by making the building as green as possible. A pilot project for the LEED certification system, many of the facilities' features such as geothermal heating were far from the norm at the time.

Reclaimed materials were integral to the design. An early program of the Green Institute had been the ReUse Center, a building deconstruction and material resale program. Incorporating reclaimed materials into the PEEC was both a natural extension of the ReUse Center's activities and an opportunity to model sustainability for the neighborhood and beyond.

90


Phillips Eco-Enterprise

Facade features brick from a deconstructed industrial warehouse.

"WE WANTED TO DO THINGS DIFFERENTLY; WE WANTED TO **STRETCHIN** AREAS THAT OTHERS MIGHT NOT."

- Corey Brinkema, client

Office

DESIGN FOR REUSE HIGHLIGHTS

— The client established an initial goal of using 10% salvaged materials. Some materials, such as the brick and wood used around the main entrance, were incorporated into the design early. Others, like fire extinguisher cabinets, were found later in the process.

- The contractor, Kraus-Anderson Construction, came on board in the Design Development phase. Material reuse was discussed as part of the bid process, and the contractor factored in an allowance for reclaimed materials into their bid.

- Reclaimed material came from the ReUse Center and a variety of other sources. Heavy timbers came from the deconstruction of an Army warehouse. The contractor secured the kitchen cabinets from another demolition project. Project architect LHB found the steel joists that formed nearly three-quarters of the building's structural system, from a classified newspaper ad.

- Unfamiliarity of subcontractors with material reuse sometimes led to challenges. Computer modeling and testing determined usability of the steel joists. However, the subcontractor insisted on also welding all the connections, which added an unanticipated cost.

Phillips Eco-Enterprise

— There was no storage space or financing to pre-purchase much of the materials. Many reclaimed materials were delivered directly to the construction site after purchase or refurbishment.

— Final installation design was determined in the field for materials not obtained until construction.

- Reclaimed materials often were sourced regionally, reducing the environmental and financial cost of long distance transport oftedn associated with new materials.

— The Green Institute uses tours and signage to educate visitors about the reclaimed materials and other green building strategies.

- Reclaimed materials include 100-year-old brick used as exterior cladding, and 5,000 square feet of carpet that only had two years of use.

- Reclaimed timber beams used as stair treads and trim avoided the use of 804 board feet of virgin wood. Reclaimed steel joists saved nearly 50 tons of new steel that would have required 110 million BTUs of energy to manufacture.

Office

START EARLY

Material reuse was factored into design and construction early. It was included as part of the initial construction bidding process, and the contractor developed an understanding of the code and specifications requirements early.

BE FLEXIBLE

With limited resources to buy or store materials prior to the design phase, many of the reclaimed materials were secured during construction. The project team maintained flexibility around design and installation details in order to accommodate materials as they were found.

TALK IT OVER

An open dialog was established across the team and with building officials and inspectors demolition job. early on. This communication facilitated material sourcing and procurement and helped the team deal with challenges during construction.

GET SUPPORT FROM THE TOP

Having a client who values reuse is key if reclaimed materials are going to be effectively incorporated into a project. When challenges arise during procurement, design or construction, a supportive client can help smooth bumps in the road.

TURN SUBCONTRACTORS INTO REUSE CHAMPIONS

Contractors may participate in early meetings about reuse, but subcontractors are often ultimately responsible for material installation. Unfamiliarity with reclaimed materials can lead to decisions that increase costs. Get everyone—including subs—on board at the start of construction, and keep talking about material reuse strategies throughout construction.

LEAVE NO SOURCE UNTURNED

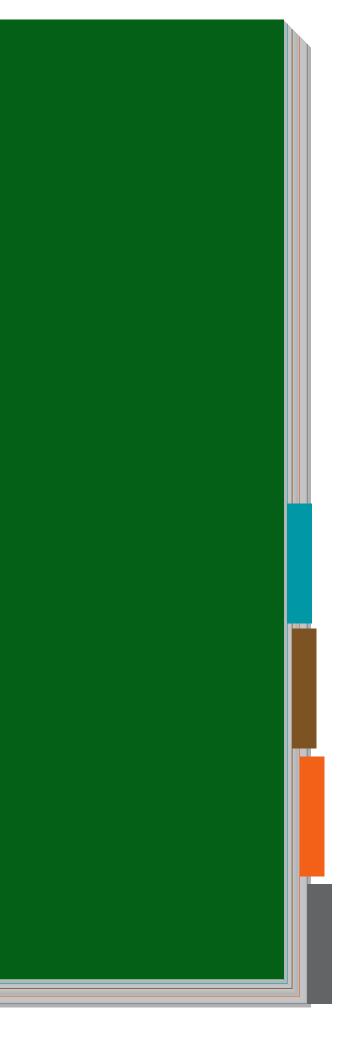
Reclaimed materials don't only have to come from a reuse store or salvage yard. Project team members sourced materials from places as diverse as newspaper ads, a deconstructed Army warehouse, and another

Phillips Eco-Enterprise

LEARN MORE

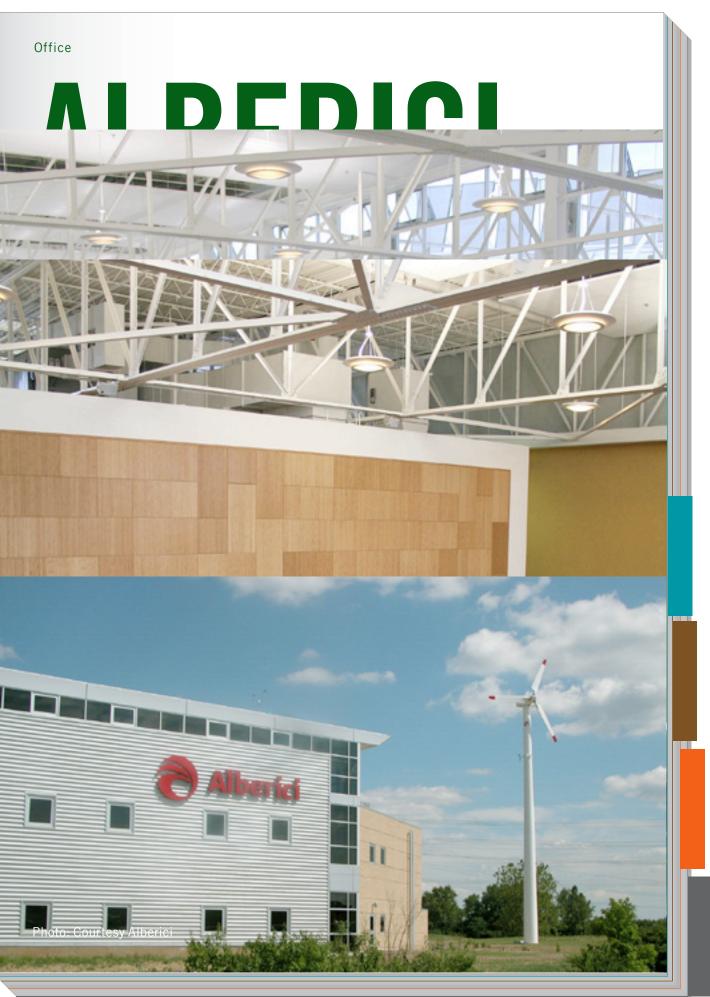
KRAUS-ANDERSON CONSTRUCTION

kraus-anderson.com

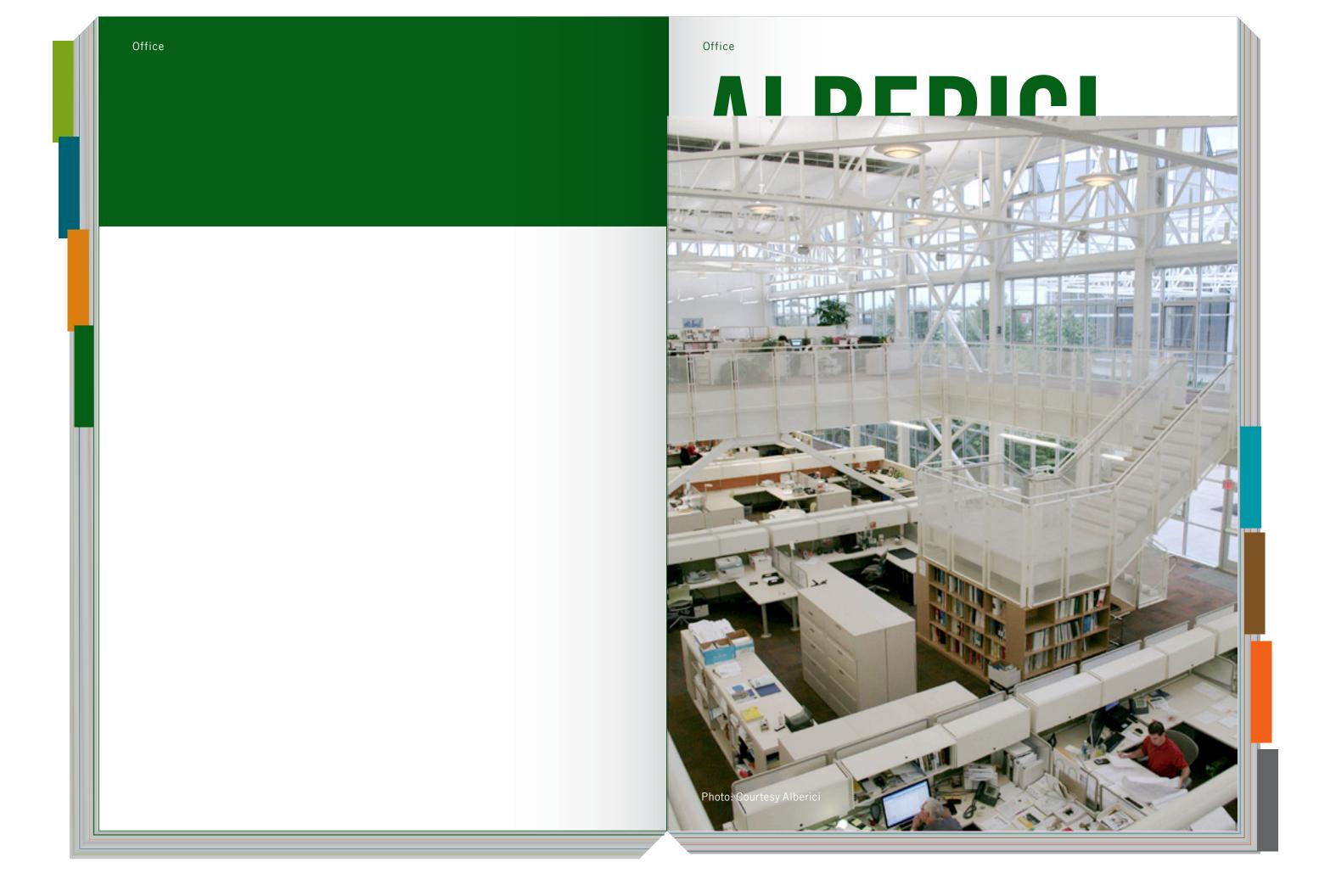

LHB, INC. Ihbcorp.com

THE GREEN INSTITUTE greeninstitute.org

THE REUSE CENTER thereusecenter.com


p. 91 Photo: LHB, copyright 2010

Office			Phillips Eco-Enterprise					
MATERIAL	ORIGINAL USE	REUSE APPLICATION	SOURCE	SOURCE LOCATION	QTY	REFURBISHMENT		
Steel	Roof joists	Joists	Offsite, vendor in newspaper	Hugo, MN	50 Tons	Sandblasted and refin- ished		
Wood timbers	Beams	Stair treads & trim	Offsite, army warehouse deconstruc- tion	Minneapo- lis, MN		Milled		
Brick	Exterior masonry	Exterior masonry	Offsite, industrial warehouse decon.	Chicago, IL	22,000 Bricks	Cleaned		
Countertops	Counter- tops	Countertops	Offsite, vendor: Re- Use Center	Minneapo- lis, MN				
Fire Extinguisher Cabinets	Fire Extinguish- er Cabinets	Fire Extinguisher Cabinets	Offsite, vendor: Re- Use Center	Minneapo- lis, MN				
Photovoltaics	Solar Energy Collectors	Solar Energy Collectors	Offsite, vendor: Re- Use Center					
Carpet	Carpeting	Carpeting	Offsite, contractor demo job	Minneapo- lis, MN	5,000 Sq ft			
Kitchen cabinets	Kitchen Cabinets	Kitchen Cabinets	Offsite, vendor: Re- Use Center					
Sinks	Restroom sinks	Sinks	Offsite, vendor: Re- Use Center	Minneapo- lis, MN				
Benches and exterior deck	Benches and decking	Benches and exterior decking	Offsite, vendor: Re- Use Center	Minneapo- lis, MN				
Workstations	Worksta- tions	Office worksta- tions	Offsite, vendor: Re- Use Center	Minneapo- lis, MN		Refurbished		
Doors and frames	Exterior doors and frames	Interior doors and frames	Offsite, vendor: Re- Use Center	Minneapo- lis, MN				
Windows	Exterior windows	Interior windows	Offsite, vendor: Re- Use Center	Minneapo- lis, MN				



Office

96

Office

ALBERICI HEAD-QUARTERS

KEY INFO AND REUSE-RELATED PROJECT TEAM MEMBERS

PROJECT NAME Alberici Corporate Headquarters

TOTAL PROJECT COST (LAND EXCLUDED)

\$20.1 million CERTIFICATIONS

SIZE

110,000 Sq ft

CLIENT/OWNER

ment Corporation

Alberici Redevelop-

LEED-NC Platinum

MANAGER

Inc.

ARCHITECT Mackey Mitchell Associates

LOCATION Overland, MO

YEAR COMPLETED 2004

PRIMARY USE Commercial office

CONSTRUCTION TYPE

Adaptive reuse

97

Office

STRUCTURAL ENGINEER Alper Audi, Inc.

SUSTAINABILITY CONSULTANT Vertegy, an Alberici Enterprise

CONSTRUCTION Alberici Constructors,

CONSTRUCTION COMPANY TRANSFORMS FORMER METAL PLANT INTO MODERN HEADQUARTERS BUILDING

Alberici Redevelopment Corporation is a construction company with a portfolio across the Midwest, Southeast, Canada and Mexico. Headquartered in St. Louis, Missouri, the company had outgrown their original facility, and purchased a 14-acre site for their new headquarters. It was not until after the site had been selected and the project budget determined that John Alberici, Chairman of the Board, boldly set a goal of achieving LEED NC Platinum certification. It would be the first LEED certified project that the company had worked on.

After a series of 'ecocharettes,' the project team decided not to build from the ground up. Instead, they opted to renovate the 156,000-square-foot former metal manufacturing facility and reclaim materials from a vacant 1950's three-story office building, both located on-site. The original budget didn't account for any added green building or LEED certification costs, requiring the project team to be extremely resourceful.

Material reuse was a major component of the project team's efforts to do a lot with a little. By taking advantage of the abundance of materials in the existing buildAlber

ings, as well as Alberici's easy access to construction debris from other projects, material reuse became a creative means of achieving sustainability goals despite budget constraints.

Alberici Headquarters

Used metal sheet piling from other Alberici job sites was used to reshape the landscape for stormwater mitigation.

"YOU HAVE TO HAVE... A LITTLE BIT OF A DUMPSTER-DIVER MENTALITY OF, 'WHAT CAN WE USE THIS STUFF FOR?"

— Thomas Taylor, client/team leader

Office

DESIGN FOR REUSE HIGHLIGHTS

— This was a design-build project, in which a single entity oversees both design and construction. As a contractor-led design-build project, Alberici was at the helm and Mackey Mitchell was the design firm.

- This arrangement allowed more time and flexibility for locating reclaimed materials. Apart from the crane rail beams indentified in the pre-design phase, all other reclaimed materials were sourced by Alberici during construction. Alberici used Mackey Mitchell's drawings as the basis of the design and made substitutions where appropriate.

- The crane rail beams once supported large overhead cranes in the manufacturing facility. In the renovated building, they support the second floor, complementing the heavy steel presence of the building's original structure. Since the beams had a greater load capacity than what was specified, it was easy for the structural engineer to approve their use.

— The crane rail beams required decontamination. Spot abatement occurred on connections in situ to facilitate safe dismantling. More comprehensive paint stripping occurred once the beams were removed. Then they were visually inspected for structural deficiencies.

- Many of the offsite reclaimed materials came from other Alberici job sites. For a retaining wall, Alberici was able to secure large quantities of used metal sheet piling, discarded from another site.

— Taylor sought to create buy-in about reuse across the entire project team. The construction crew became resourceful in sourcing materials, such as suggesting precast panels removed from another Alberici project for use in the transfer culvert pipe.

— The project achieved MR credit 3.1. Taylor noted that it was not difficult to track the reclaimed materials used, but it was difficult to achieve the credit's minimum threshold because it is based on costs. The project benefited from materials with high replacement values such as steel and brick.

— The project's reclaimed materials include 4,000 linear feet of crane rail beams used as structural support, sheet pile used in the landscaping retaining wall, broken granite slabs turned into countertops in the conference rooms, and approximately 9,000 tons of reused concrete and brick.

3

LESSONS LEARNED LEARN MORE

BE RESOURCEFUL

Office

Instead of being a hindrance, the tight budget sparked creativity. When seeking finishes for a conference room, Taylor reached out to local granite vendors for broken slabs. Such high quality granite would not have otherwise been affordable within the project budget.

AIA COTE TOP TEN **CASE STUDY** aiatopten.org/hpb/overview. cfm?ProjectID=662

ALBERICI ENTERPRISES alberici.com

MACKEY MITCHELL ARCHITECTS mackeymitchell.com

GET TEAM BUY-IN

Excited about the possibilities of reuse, team members uncovered opportunities that might have otherwise gone overlooked.

OVERSIZE STRUCTURAL MEMBERS

Using reclaimed structural members that are larger than specified can increase the likelihood of approval by the structural engineer.

FOR LEED CREDITS, BE STRATEGIC ABOUT REUSE

The LEED credits relating to material reuse, MR 3.1 and 3.2, currently are based on reclaimed materials as a percentage of overall material costs. By strategically using materials with high replacement value, the project team overcame the cost barrier often associated with this credit.

STAND OUT FROM THE CROWD

The adaptive reuse of the manufacturing facility created a distinctive appearance that architect Jim Konrad of Mackey Mitchell calls "very strong and brawny." The scale of the large crane rail beams fit perfectly within this context, and provided a look that would have been unaffordable if purchased new.

101

100

Alberici Headquarters

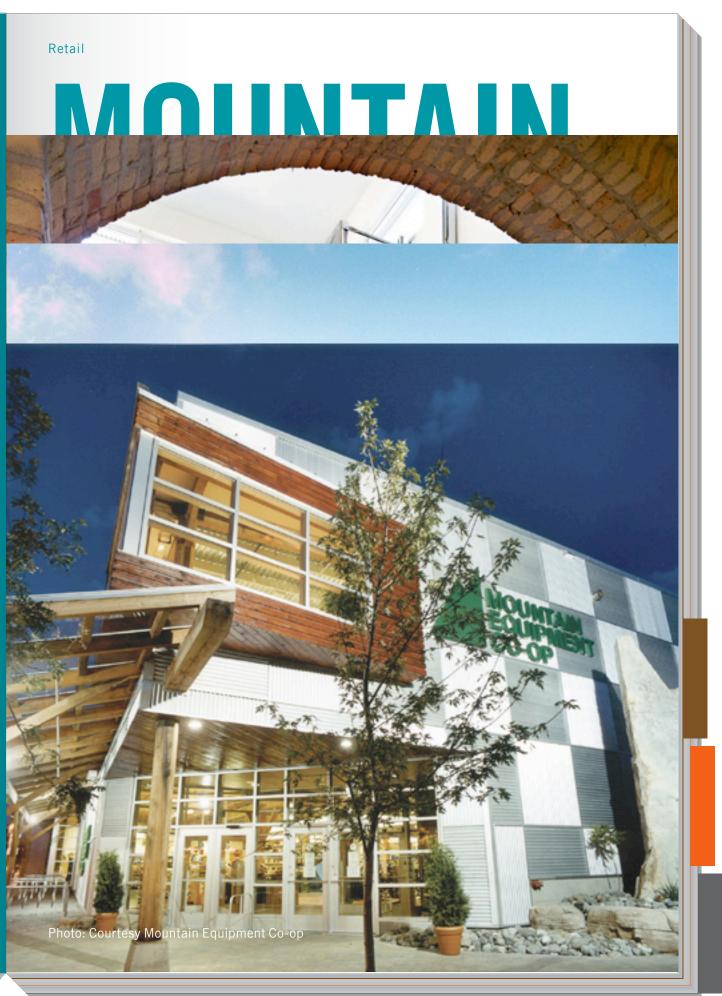
Open offices within former metal manufacturing facility.

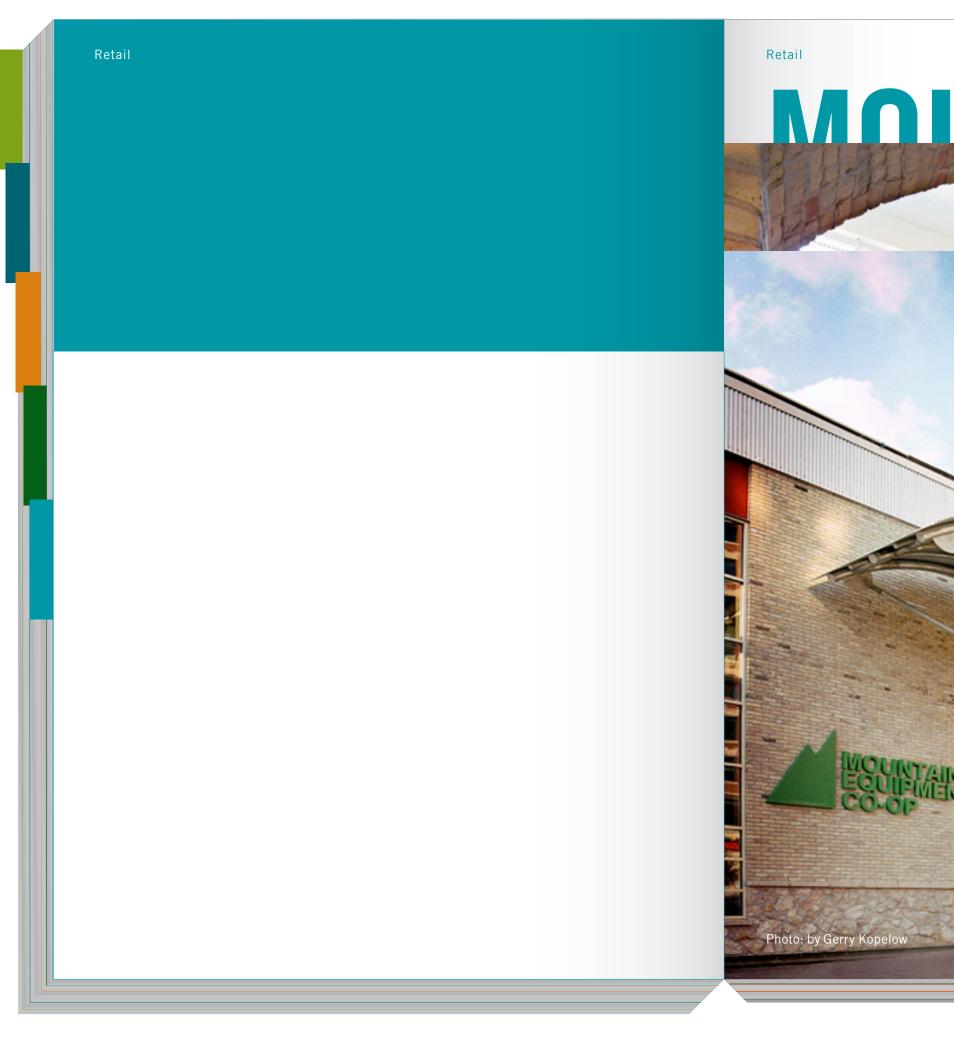
p. 99, 101 Photos: Courtesy Alberici

Office			Alberici Headquarters			
MATERIAL	ORIGINAL USE	REUSE APPLICATION	SOURCE	SOURCE LOCATION	QTY	REFURBISHMENT
Steel	Crane rail beams	Beams	On-site	Overland, MO	4,000 Ln ft	Lead Paint Abatement, Cut-to-Size
Steel	Steel sheet piling	Steel sheet piling	Off-site, contractor job site	St. Louis, MO		N/A
Concrete	Precast concrete panels	Pipe culvert	Off-site, contractor job site	St. Louis, MO	8 Panels	N/A
Brick and concrete	Masonry	Site fill	On-site	Overland, MO	>9,000 Tons	Crushed
Broken granite slabs	N/A	Stone tabletops	Offsite, vendor: granite supplier	St. Louis, MO		Cut-to-size
Limestone	Window sills and parapet coping	Landscape elements	On-site	Overland, MO		Cut-to-size
Wind turbine	Wind turbine	Wind turbine	Offsite	California	1 Wind turbine	N/A

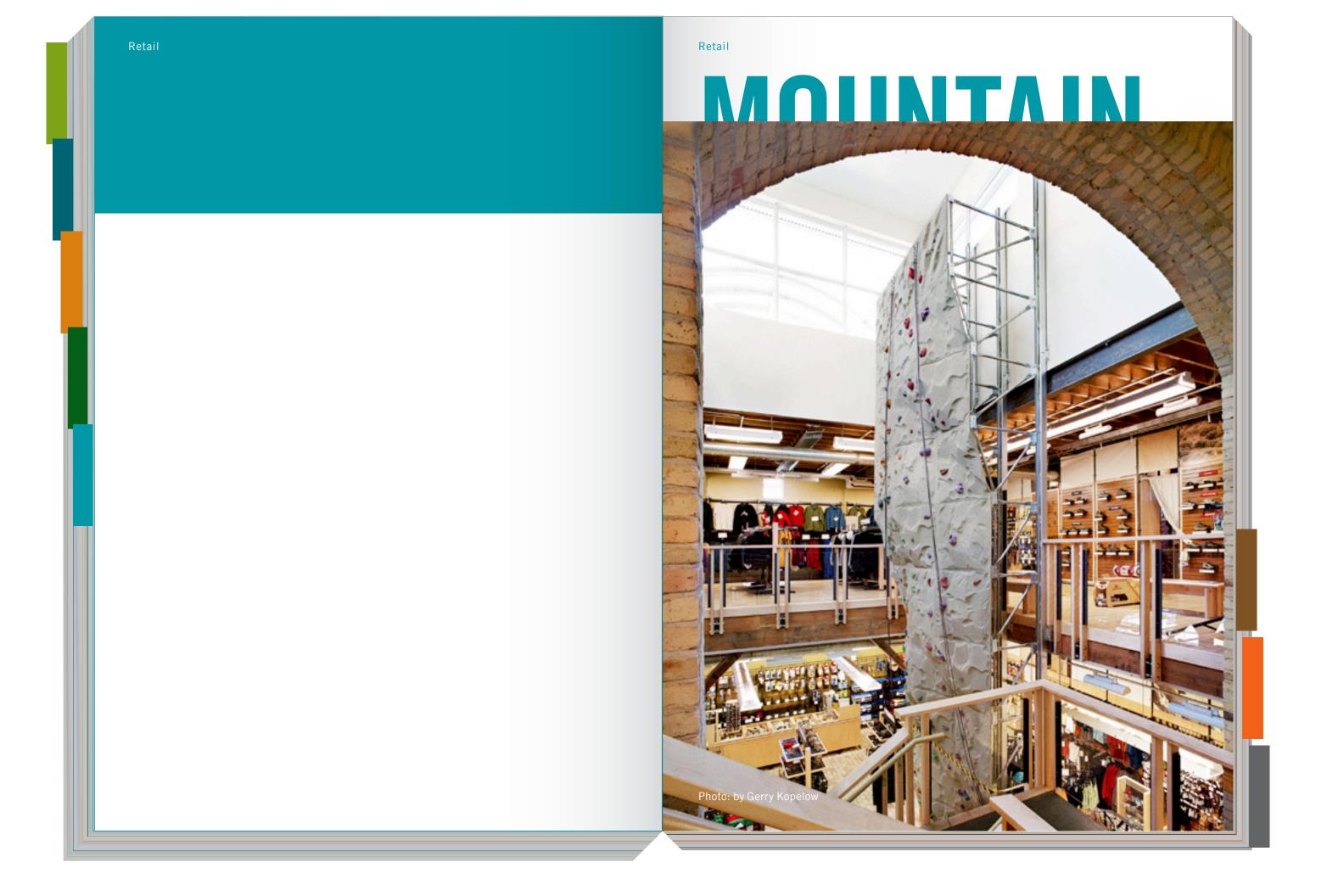
RETAIL

107


Mountain Equipment Co-op Ottawa & Winnipeg


"WE BUILD WHAT WE BUILD BECAUSE IT'S THE RIGHT THING TO DO."

---Sandy Treagus, client, Mountain Equipment Co-op


A retail company's stores are the visual calling card of its brand, physically relaying a company's values to their clientele. To be effective, brand strategy must extend beyond one location to the entire network of stores. Mountain Equipment <u>Co-op (MEC)</u>, a recreational gear retailer with locations across Canada, wanted to create stores that would reflect the company's commitment to sustainability and their customers' passion for the outdoors. In particular, they wanted their stores, their staff, and their product supply chain to move toward carbon neutrality. Building their new stores with reclaimed materials was a significant part of this sustainable vision. The case study that follows profiles two of the company's stores, demonstrating not only a long-term enthusiasm and dedication to building green but also large-scale models of reuse for Canada and beyond.

MOUNTAIN EQUIPME CO-OP

KEY INFO AND REUSE-RELATED PROJECT TEAM MEMBERS

SIZE

Co-op

26,910 Sq ft

ARCHITECT

Architect

STRUCTURAL

neering Limited

CONSTRUCTION

Justice Construction

Cleland Jardine Engi-

ENGINEER

MANAGER

CLIENT/OWNER

Mountain Equipment

OTTAWA STORE

Retail

PROJECT NAME Mountain Equipment Co-op Ottawa

LOCATION Ottawa, ON Canada

YEAR COMPLETED 2000

PRIMARY USE Commercial office

CONSTRUCTION TYPE Retail

TOTAL PROJECT COST (LAND EXCLUDED) \$2.9 milion CDN

CERTIFICATIONS

C-2000 standard

107

Linda Chapman Architect / Christopher Simmonds

> CONSTRUCTION TYPE New construction

LOCATION Winnipeg, MB Canada

YEAR COMPLETED 2002

Retail

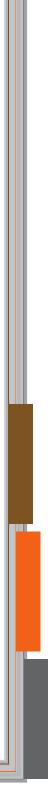
WINNIPEG STORE

PROJECT NAME Mountain Equipment Co-op Winnipeg

CERTIFICATIONS LEED Canada–NC 2.1 Gold, C-2000 standard

SIZE

PRIMARY USE


TOTAL PROJECT COST (LAND EXCLUDED) \$2.5 million CDN 30,200 Sq ft **CLIENT/OWNER**

Mountain Equipment Co-op

ARCHITECT Prairie Architects

STRUCTURAL ENGINEER Wolfrom and Associates

CONSTRUCTION MANAGER **Milestone Project** Management

Retail

DESIGN FOR REUSE IS A GOOD FIT FOR OUTDOOR RETAILER

As Canada's largest retailer of outdoor gear, Mountain Equipment Co-op (MEC) attracts customers who care about the health of the environment. So it is only natural that the company has made a commitment to designing and operating its stores to use natural resources efficiently.

For more than a decade, MEC has been building green "because it's the right thing to do," said Sandy Treagus, MEC's Chief Financial Officer. The company's Ottawa and Winnipeg stores, built in 2000 and 2002 respectively, were the first two retail buildings to meet the requirements of Canada's C-2000 Program for Advanced Commercial Buildings. This early green building standard served as a precursor to LEED Canada. The Winnipeg store has also been certified at the Gold level by LEED Canada.

Although these two stores are no longer new, they continue to serve as models for how retailers and other businesses can reduce their carbon footprint, enhance their brand and conserve resources by designing for reuse.

"IT'S THE RIGHT THING TO DO." - Sandy Treagus, client

109

OTTAWA STORE DESIGN TAKES DECONSTRUCTION **FULL CIRCLE**

108

Mountain Equipment Co-op

When MEC set out to build a new store in Ottawa, they acquired a property occupied by a 40-year-old grocery store. The company and its project architects, Linda Chapman Architects and Christopher Simmonds Architect, evaluated the existing two-story, steel-frame structure and decided it wasn't practical to adapt it to suit MEC's needs. Rather than demolishing the building, they took a greener path: they had it deconstructed and designed the new building to reuse as much of the old one as possible. Materials not slated for reuse were sold at the end of deconstruction at an onsite sale to demolition contractors and the general public.

Architect Linda Chapman saw an advantage to combining deconstruction with reuse on the same property. "It makes it more cost effective if the building that you're salvaging materials from is the building that happens to be on the site," she said.

While scheduling is sometimes a challenge when working with reclaimed materials, CFO Treagus noted that planning ahead solved most issues and that the benefits of reuse make the extra effort worthwhile.

Using an integrated design process, the team designed a struc-

Mountain Equipment Co-op

tural framework that combines salvaged timber on the ground floor with a second-story and roof built of steel reclaimed from the old grocery store.

The design team initially considered a ground-floor structural system made of new steel or concrete, but were dissuaded by the high embodied energy of those materials. Instead, they designed a timber-frame structure, using high quality Douglas fir timbers salvaged from the bottom of the St. Lawrence River; the timbers were once floating log booms used to keep logged trees from drifting away.

The timbers were evaluated by a professional grader, remilled into posts and beams, and used to build a dramatic, exposed timber frame that subtly evokes the experience of hiking through a forest. Additional salvaged fir was used for exterior siding and shade trellises.

From a resource conservation perspective, using salvaged timber made sense, and from the shopper's perspective, the look of salvaged wood "just fits," says store manager Colleen Mooney.

For the second-story structural frame and roof, the team used all the steel posts, beams and openweb joists from the original building. These components were disassembled, labeled and taken to an off-site facility. After inspection by a structural engineer, the steel

110

components were modified as needed and returned to the site. There they were reassembled, along with new steel components, to form the new roof and supporting structure.

To make it easier to reuse the steel columns, beams and foundation, the architects followed the column locations and structural grid dimensions of the original building. Components that could not be removed without compromising their structural integrity, such as the welded roof deck, were sent to a recycling facility.

Other reused materials include the old grocery store's concrete slab and terrazzo flooring, which was retained on the first floor, and glass blocks that were reused as interior partitions. Concrete blocks from the original building were mixed with new blocks to form the façade, creating a visual effect similar to tumbled marble, Chapman said. Additional flooring material was milled of red elm beams from a deconstructed barn.

Chapman estimates that 75 percent of the material, by weight, was reused from the original building. The project team, however, took a different approach to valuing the reclaimed materials than the LEED Green Building Rating System does. LEED's material reuse credits are based on the cost of the reclaimed materials as a percentage

Retail

of the overall project material costs. MEC's priority was not on material cost, Chapman said, but on the weight and volume of material kept out of the landfill. Ultimately, more than 1,300 tons of salvaged material was used on the project, accounting for roughly 57 percent of the total material used to construct the building.

In addition to reusing much of the old building, the project team took their commitment to reuse a step further: they designed and built the Ottawa store for disassembly. Its structural systems are nail free, with connections either bolted or screwed so that the building can be readily adapted or deconstructed in the future.

"IT MAKES IT MORE COST EFFECTIVE IF THE BUILDING THAT YOU'RE SALVAGING MATERIALS FROM IS THE BUILDING THAT HAPPENS TO BE ON THE SITE."

- Linda Chapman, Ottawa store architect

A few years later, MEC built on the successes of the Ottawa store when developing a new store in Winnipeg. When the company acquired the Winnipeg property, the City of Winnipeg was on the verge of demolishing three derelict buildings on the site. MEC and their architects, Prairie Architects, asked the city to hold off on the demolition and brought in a structural engineer to evaluate whether the buildings could be reused or their materials reclaimed. The engineer inspected the three buildings and advised that the largest of them, a four-story building, was structurally sound. The others were too dilapidated for occupancy but could be deconstructed and their materials recovered.

As deconstruction proceeded, the project team developed "a shopping list of all the materials that were taken out," said Dudley Thompson, Principal of Prairie Architects. "That is what we used to design the new building."

Mountain Equipment Co-op

WINNIPEG STORE KEEPS THREE BUILDINGS OUT OF **THE LANDFILL**

Prairie Architects came up with a design concept that combined a complete overhaul of the four-story building with a significant addition, and together with MEC convinced the city to reallocate the demolition funds to deconstruction.

Mountain Equipment Co-op

Retail

While the two smaller buildings were being deconstructed, the remaining building served as a warehouse for all the salvaged materials. In a sense, "the lumber store was already onsite," said Thompson.

Materials not slated for reuse in the MEC store were put on the sidewalk with a "free" sign; not surprisingly, those materials disappeared quickly. In an innovative deal, MEC donated the 300,000 bricks stripped from the deconstructed buildings to Habitat for Humanity, which brought in volunteers to clean the mortar from the bricks. Habitat for Humanity then sold back 100,000 bricks to MEC at a discounted price of 10 cents (Canadian) per brick. They sold the remaining bricks publicly at market prices and as a result of these transactions made enough money to build two homes.

MEC used the refurbished bricks on the facade and as flooring on the ground level. Brick flooring was an unusual choice for a store, but it looks beautiful and costs much less than the imported tile that was original specified.

The majority of the materials recovered during deconstruction were reused in the Winnipeg store, Thompson said. Timber and steel from the deconstructed building now serve as the new structural system. During deconstruction, six beautiful old cast iron columns

were found ensconced in one of the walls. The structural design was modified slightly to accommodate the columns, which were left exposed. Old sheathing was reused for the new floor decks and wall sheathing. Tyndall stone, a type of limestone quarried only in Manitoba, was removed from the original foundation and used to create the lower portions of the facade.

The building achieved Gold certification from the LEED Canada NC Green Building Rating System and received both Resource Reuse credits, MR 3.1 and 3.2. The store was the first LEED certified building in Winnipeg and has helped Prairie Architects build a reputation for sustainable design.

Douglas Fir from St. Lawrence River were reused as columns and beams in the Ottawa store.

BUILDING ON SUCCESS

Retail

MEC's goal is not only to build and operate their stores more sustainably but to create positive models for their customers, the general public and other companies. "The biggest compliment anyone could give us is by copying what we are doing," said CFO Treagus.

Every MEC store has a sustainability coordinator who oversees waste reduction efforts and green building audits in addition to conducting green building tours. MEC is developing an inhouse standard for sustainable building that will include guidelines for using reclaimed materials and designing for a building's end of life. Their Burlington store, completed in 2008 in Ontario, has a structure and envelope designed for disassembly. Panelized walls, mechanically fastened structural wood, and some exterior and interior finishes can be readily taken apart and reused if the building needs to be adapted or taken down in the future.

112

Mountain Equipment Co-op

Concrete block from the original structure on the Ottawa site found new life in the exterior facade.

"THE BIGGEST COMPLIMENT ANYONE COULD GIVE US IS BY COPYING WHAT WE ARE DOING."

-Sandy Treagus, client

Mountain Equipment Co-op

Retail

LESSONS LEARNED

LEAD BY EXAMPLE

Retail

Deconstruction, reuse, and design for disassembly take more effort than conventional demolition, design and construction. The most successful reuse projects start with buildings for disassembly clients and designers explicitly committed to sustainability.

DEVELOP A SHARED VISION OF REUSE

Instead of viewing dilapidated structures as obstacles to be removed from the site, look at them as gold mines of high quality, inexpensive materials with which to build a signature and cost effective new building.

ENHANCE YOUR BRAND

Reused building materials can help give buildings a distinctive look and feel that will draw in customers and keep them coming back. The dramatic salvaged timbers in MEC's Ottawa store reinforce the company's reputation as a protector of the environment.

LEAVE A SMALLER FOOTPRINT

When shoppers think about the carbon footprint of a product like hiking boots, they tend to focus on the energy and resources that went into making and shipping those boots. But climate-savvy retailers like MEC pay attention to the bigger picture, including how they build and operate their stores. Material reuse can help retailers and other business tread a little more lightly.

LEARN MORE

COMPLETE THE CIRCLE

Using reused materials in construction is a good beginning. But leading designers and building owners are going the next step and designing their making it easier for future remodeling and for the next round of designers and owners to keep valuable resources in circulation.

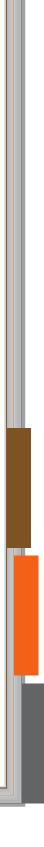
CHRISTOPHER SIMMONDS ARCHITECT csarchitect.com

LINDA CHAPMAN ARCHITECT smartarchitecture.com

MOUNTAIN EQUIPMENT CO-0P mec.ca

PRAIRIE ARCHITECTS prairiearchitects.ca

Winnepeg customers and staff have praised the character provided by the reclaimed wood. **OTTAWA STORE**


MATERIAL	ORIGINAL USE	REUSE APPLICATION	SOURCE
Douglas-fir	Log booms in St. Lawrence River	Columns, beams, truss, wood siding	Offsite, vendor: Goodfellow Inc.
Steel	Structur- al steel framing	Joists, columns, and beams	On-site
Red elm	Beams in old barn	Wood flooring	Offsite, vendor: Antique Timber Products
Glass block	Exterior walls	Interior partitions	On-site
Concrete block	Exterior walls	Exterior and interior masonry walls	On-site

p. 112, 113 Photos: Courtesy Linda Chapman Architect p. 114 Photo: by Gerry Kopelow

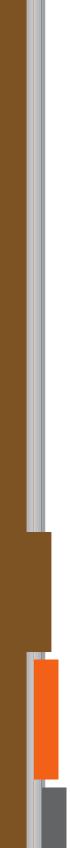
114

Mountain Equipment Co-op

SOURCE LOCATION	QTY	REFURBISHMENT		
	258,168 Lbs	Milling		
On-site	74,055 Lbs	Brushed		
Lanark, ON	29,140 Lbs	Milled		
On-site	2,000 Lbs	De-mortared		
On-site	100,600 Lbs	De-mortared		

Mountain Equipment Co-op

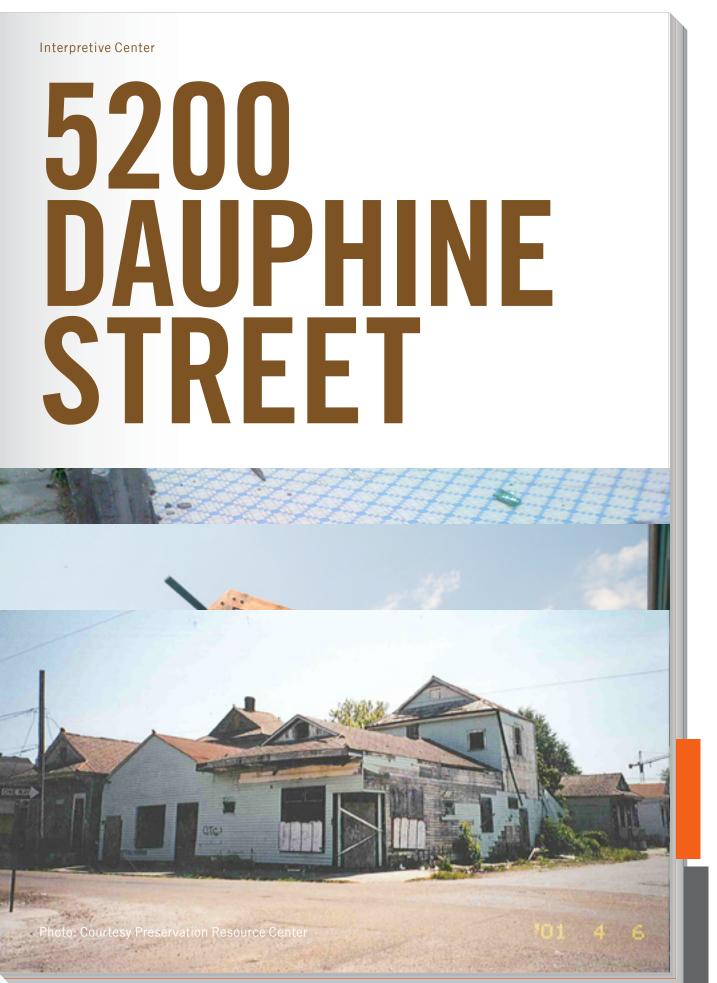
WINNIPEG STORE

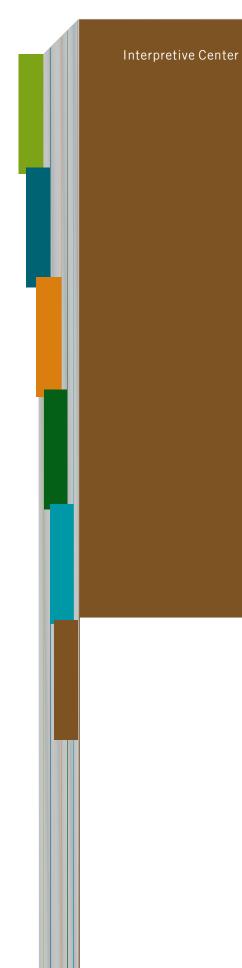

MATERIAL	ORIGINAL USE	REUSE APPLICATION	SOURCE	SOURCE LOCATION	QTY	REFURBISHMENT
Bricks	Exterior Masonry	Flooring and facade	On-site	On-site	5,965,820 Lbs	De-mortared
Cast iron	Columns	Columns	On-site	On-site	117 Ln ft 7,605 Lbs	
Steel L	Structur- al steel framing	Structural steel framing	On-site	On-site	695 Ln ft 13,435 Lbs	
Tyndall stone	N/A	Exterior stone cladding	On-site	On-site	285,000 Lbs	
Plywood		Wood flooring	On-site	On-site	4,224 Lbs	
Wood flooring	Wood flooring	Wood flooring	On-site	On-site	20,000 Ln ft	Sandblasted
Shiplap siding	Sheathing	Exterior siding	On-site	On-site	26,910 Ln ft	
Wood beams	Wood beams	Wood beams	On-site	On-site	3,120 Ln ft	Sandblasted
2x dimen- sional lumber	Wood framing	Wood framing	On-site	On-site	44,025 Ln ft	Sandblasted
1x dimen- sional lumber	Wood framing	Wood framing	On-site	On-site	33,440 Ln ft	Sandblasted

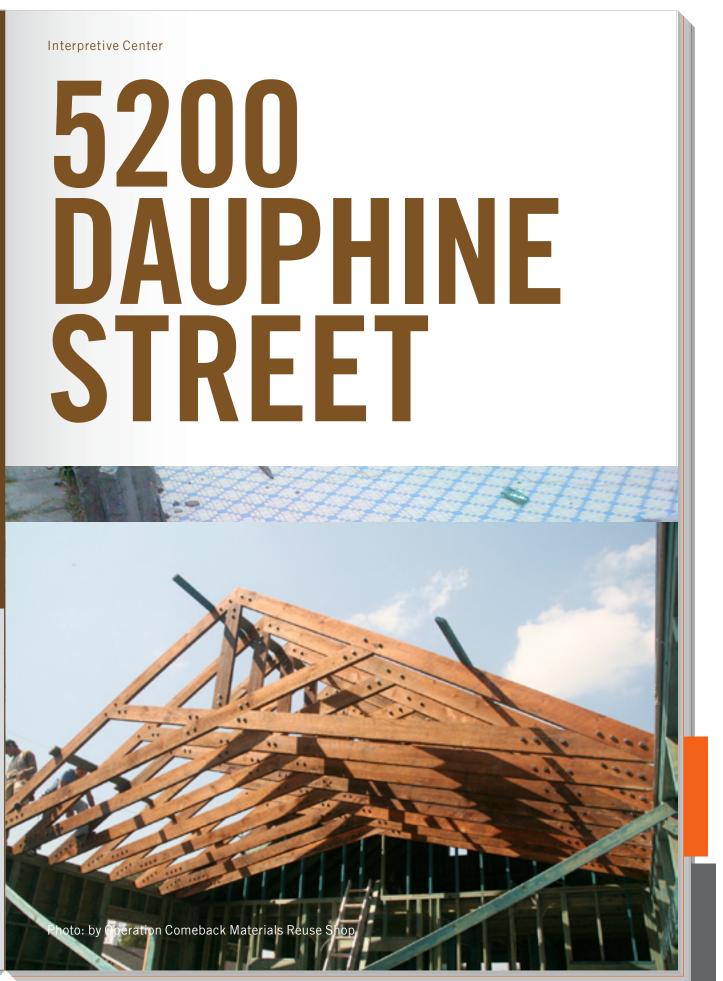
INTER-CENTER

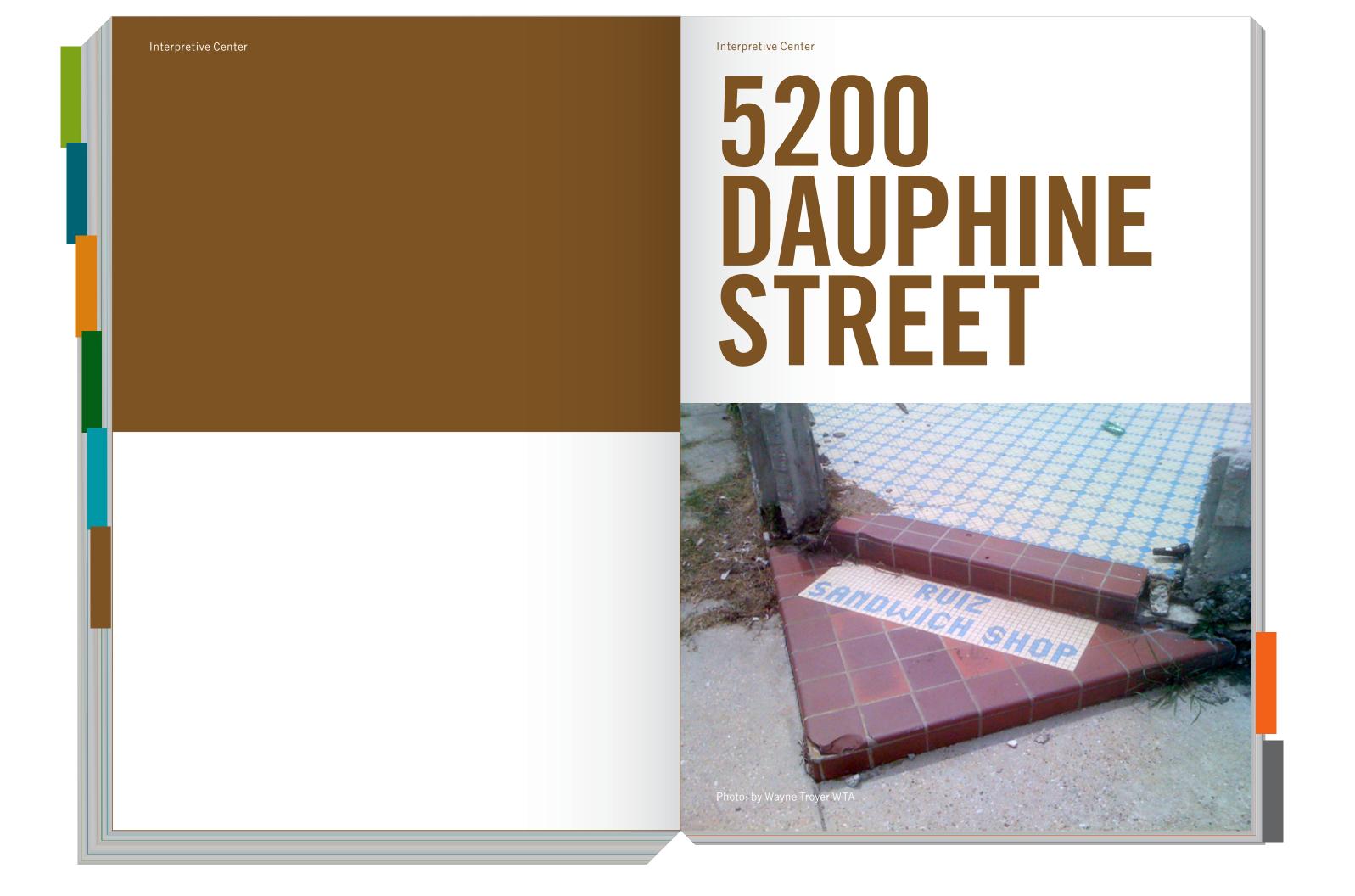
Operation Comeback 5200 Dauphine Street Omega Center for Sustainable Living

116


"WE DON'T HAVE TO BUILD NEW TO ACCOMMODATE CLIMATE CHANGE."


— Pam Bryan, client, 5200 Dauphine Street


The definition of what it means to build sustainably is constantly evolving. Mainstream definitions often revolve around new technologies such as high efficiency solar thermal or ventilation systems. More recently however, the concept of the triple bottom line—people, profit, planet—has been gaining acceptance as a more holistic vision of sustainable design and its benefits. The two interpretive centers profiled here directly engage this broader notion of sustainability. Rising out of the destruction of Hurricane Katrina, <u>5200 Dauphine Street</u> will be a community and education center that exemplifies a new standard for rebuilding in New Orleans. The project approaches the area's rebirth quite literally by repurposing the ruins. Showcasing the principles of the newly launched Living Building Challenge, the Omega Center for Sustainable Living brings together ecological sensitivity with human well-being. In both projects, material reuse becomes an effective tool for the clients to demonstrate new models of sustainable building and living.



Interpretive Center

5200DAUPHINE STREFT

KEY INFO AND REUSE-RELATED PROJECT TEAM MEMBERS

PROJECT NAME Operation Comeback 5200 Dauphine Street

TOTAL PROJECT COST (LAND EXCLUDED) \$450-540,000 (estimated)

SUSTAINABILITY CONSULTANT **PGAV** Architects

REUSE CONSULTANT Brad Guy

LOCATION New Orleans, LA

YEAR COMPLETED 2010 (anticipated)

PRIMARY USE Assembly, Commercial office, Interpretive center, Retail

CONSTRUCTION TYPE New construction

121

ARCHITECT Wayne Troyer Architects

CERTIFICATIONS LEED-NC Platinum (anticipated)

2,670 Sq ft

Preservation

CLIENT/OWNER

Resource Center

SIZE

STRUCTURAL ENGINEER Avegno, Bailey, & Associates

GENERAL CONTRACTOR Insight Builders

DECONSTRUCTION CONTRACTOR Hal Collums Construction

HISTORIC PRESERVATION CONSULTANT William Dupont

LEED CONSULTANT Chip Henderson

DECONSTRUCTION/ **RECONSTRUCTION: A MODEL** FOR DISASTER RECOVERY

The new home of the Holy **Cross Neighborhood Association** in New Orleans will be a model for how communities devastated by natural disasters can rebuild sustainably. By combining green building design with cultural and historic preservation, the facility retains a strong aesthetic connection to the neighborhood while celebrating its regrowth.

A few years after Hurricane Katrina, the Preservation Resource Center (PRC), which rebuilds historic properties in blighted areas, acquired the property at 5200 Dauphine Street. The two-story, 100-year-old structure was located in the Holy Cross neighborhood of New Orleans's Lower Ninth Ward, one of the areas most affected by the flooding. Today, five years later, only about 20 percent of Holy Cross's former residents have returned.

Before Katrina, the woodframe building at 5200 Dauphine had already suffered years of neglect; however the hurricane's winds and floods left the bones of the building unsalvageable. Although PRC focuses on rehabilitating older homes, in this case it was clear that the building could not be saved.

Across the neighborhood,

123

project.

122

5200 Dauphine Street

scores of similar buildings have been razed. "Since Katrina there has been an incredible amount of demolition in the city and the majority of it has just gone straight to the landfills," said architect Wayne Troyer, who worked with PRC on the 5200 Dauphine Street

With conventional rehabilitation unworkable because of the structure's advanced state of ruin, and with demolition unpalatable to an organization focused on preservation, PRC forged a new path.

"We want to be able to provide an alternative to either demolition or preservation. There is a middle ground there," said Pam Bryan, director of PRC's Operation Comeback, which has been working since 1987 to revitalize New Orleans.

Instead of flattening the structure and hauling it off to a landfill, the building was carefully deconstructed, the salvageable materials catalogued and stored, and a new building constructed in a similar form using much of the original material.

The project team expects 5200 Dauphine Street, slated to be completed in Fall 2010, to be the first LEED Platinum certified commercial building in Louisiana. PRC also hopes that the project will be a model for building owners and the building industry, demonstrating the possibilities of sustainable

design and material reuse even in the face of massive reconstruction needs.

"This strategy is going to serve as an economic model for other areas that are afflicted with disasters," Bryan said.

Wood from the original structure was deconstructed and sorted.

"THIS STRATEGY IS GOING TO SERVE AS ANECONOMIC MODEL FOR OTHER AREAS THAT ARE AFFLICTED WITH DISASTERS."

-Hal Collumns, deconstruction contractor

NEW DESIGN REFLECTS THE OLD

The building was deconstructed over the course of three weeks with the help of many volunteers. An estimated 60 percent of the building—primarily framing lumber, wood flooring and cypress siding was salvaged and stored in anticipation of later reuse.

The design process got underway more than a year later, in the summer of 2009. Aided by a grant from the Kresge Foundation, the PRC held a series of design charrettes with experts in historic preservation, sustainable design, and material reuse. This group joined staff from PRC and the Holy **Cross Neighborhood Association** in two design charrettes to explore and articulate the project's goals. PRC also hired Troyer's firm, which had experience blending modern, sustainable design with New Orleans's distinctive architectural styles.

The new building, which is located on a prominent corner in the neighborhood, isn't intended to be a faithful recreation of the old one. Instead, it evokes the look of the original residence—a vernacular style called "camelback shotgun"-that started as a onestory double shotgun-style house, with a second story added later.

In its later years, the building housed a neighborhood store. Newly rebuilt, the building will

Interpretive Center

serve as a community center of a different sort, acting as the headquarters of the Holy Cross Neighborhood Association, a wellestablished organization engaged in rebuilding the area. One of the Association's other projects is the Lower Ninth Ward Center for Sustainable Engagement and Development (CSED), a resource center that teaches returning residents about sustainable rebuilding, including material reuse.

For PRC and the architects, one of the major design challenges was deciding on the best uses for the salvaged materials. "The type of work I enjoy the most is adaptive reuse," said Troyer, "and looking at ways of using the existing fabric and complementing that with new technologies and new systems so that there's an expression of the past and present occurring in each and every project that we do."

Recognizing the cultural legacy that salvaged materials represent, Trover and his design colleague Julie Kaminski looked for ways to make them as visible as possible and to evoke the building's past uses. The new building's tiled front step, for example, still reads "Ruiz Sandwich Shop," giving people a taste of the site's history.

WITH A LITTLE HELP FROM THE PRINCE The deconstruction contractor, Hal Collums Construction, catalogued the materials as the building was dismantled, recording the original use and location of each piece of wood. "It really helps to have the technical knowledge as to how these parts were put together originally for you to be able to take them apart to preserve them," Hal Collums said. Most of the materials were stored in a trailer on the site. Materials that required refinishing or remilling were stored offsite at PRC's warehouse. In 2009, PRC created a mill shop staffed with graduate apprentices of the Building Crafts

124

5200 Dauphine Street

MILLING AND FABRICATING.

Training Program. PRC started the program in collaboration with The Prince's Foundation for the Built Environment, an organization established by the Prince of Wales. This Prince's Rebuilding Program had been awarded a grant from the Louisiana Recovery Authority and the Louisiana Workforce Commission. In the mill shop, workers

cleaned and remilled the wood from the deconstructed building. They also fabricated new components, including windows and exterior doors made from both new and used materials. The original exterior windows and doors could not be reused as is because they

don't meet today's building code requirements. The materials and components were then installed in the building by the general contractor, Insight Builders.

Several team members credit PRC's capacity to store and recondition salvaged materials with helping to reduce the project's cost. However, keeping track of who had responsibility for supplying or installing the various materials and components was a challenge, according to Kaminski.

In the end, the architects noted all the reclaimed materials as well as components that were made with reclaimed materials in the specifications. They then delineated the items into two categories: those provided and installed by owner, versus those provided by owner and installed by contractor. PRC is currently overseeing construction to ensure close coordination between themselves and the contractor when installing these items.

"THE BEAUTY OF THE INDIGENOUS MATERIALS DOWN HERE IS THAT THEY SURVIVED THE STORM FAIRLY WELL."

-Wayne Troyer, architect

126

5200 Dauphine Street

A NEW BUILDING GOES UP, **ONE OLD BOARD AT A TIME**

Despite the ravages of time and the floodwaters, much of the salvaged wood was still in excellent condition upon deconstruction.

"The beauty of the indigenous materials down here is that they survived the storm fairly well," said Collums.

The old-growth cypress that had once clad the building was cleaned, remilled and used as interior wainscoting. Structural framing lumber was milled into flooring. The building's counters and casework were made from wood salvaged from the original structure. For the exposed ceiling trusses in the main assembly hall, there wasn't enough large-dimension structural lumber left from the old building, so the trusses were instead built with wood from a deconstructed 19thcentury cotton warehouse located elsewhere in the state.

Some of the reused materials proved to be more challenging. The colorful ceramic tiles from the building's first floor and storefront steps were installed directly on the slab, which made it impossible to remove them intact. They could also not be incorporated into the new building's first floor because FEMA now requires structures in this area to be elevated three feet above the highest grade. Faced with these limitations, the design team came up with an ingenious solu**Interpretive Center**

tion. They retained the original tiled front steps at the site's northwest corner. On the building's east side, a portion of the original ceramic flooring now serves as pavement for an outdoor courtvard. The remaining floor tiles are still intact three feet beneath the new building, visible through viewports in the floor.

The way in which the reclaimed materials were used was influenced in part by the LEED Green Building Rating System, Kaminski said. The Material Reuse credits are calculated in a manner that favors using reclaimed materials for finishes instead of for structural purposes, she said, because it is based on replacement value. Using reclaimed material for high value finishes makes it easier to earn the credits than using them for lower value structural components. Based on this strategy, the project team expects it to earn both Material Reuse credits, MR 3.1 and 3.2.

Reclaimed wood was milled and planed by the PRC.

3

Until now, the Preservation Resource Center has mostly focused on renovation and resale of historic houses in blighted neighborhoods. The 5200 Dauphine Street project is PRC's first major deconstruction and commercial construction venture, and may serve as their springboard into the realm of sustainable redevelopment of commercial properties in the Holy Cross neighborhood.

PRC plans to publish a technical manual detailing the building systems and features, including the deconstruction and reuse process, as well as the project's decisionmaking and design processes. This project was a new ven-

ture for many of the participants, one that they hope will be a model for how communities can rebuild themselves after natural disasters. When buildings are irreparably damaged, deconstruction and material reuse offer an important way to affordably recover high quality building materials, create good jobs, retain the community's cultural, historical, and architectural legacies, and build sustainably for the future.

5200 Dauphine Street

INSPIRING A NEW APPROACH TO REBUILDING

p. 124 Photo: by Brad Guy p. 127 Photo: by John Robert Portman

LESSONS LEARNED

PROVIDE STRONG LEADERSHIP

The design charrette team a diverse group of building experts, designers, educators and activists—contributed a variety of ideas that were often in conflict with each other. Strong direction and a clear mandate from the client are required to create a cohesive design that meets the tenant's and community's needs.

LOOK FOR A MIDDLE PATH

When working in historic neighborhoods or rebuilding after natural disasters, rehabilitation or demolition aren't the only options. Deconstruction and rebuilding with the salvaged materials provides a third path that can integrate green building design with historic and cultural preservation.

KNOW ITS WORTH

Knowing the value of old building materials—including how much it would cost to replace them—can help make the economic case for deconstruction. Not only can reuse often save money on material purchases, but frequently the old materials are stronger, more durable and more beautiful than comparable new materials.

UNCOVER LINKS TO THE PAST

Sometimes, materials are worth preserving even if they can't be put to work as a building component. At 5200 Dauphine Street, a window in the floor gives people a peek at the charming old floor tiles a poignant reminder of what came before.

"THERE'S AN EXPRESSION OF THE PAST AND THE PRESENT..."

-Wayne Troyer, architect

5200 Dauphine Street

LEARN MORE

HAL COLLUMS

halcollums.com

CONSTRUCTION

HISTORIC GREEN

historicgreen.org

HOLY CROSS NEIGHBORHOOD

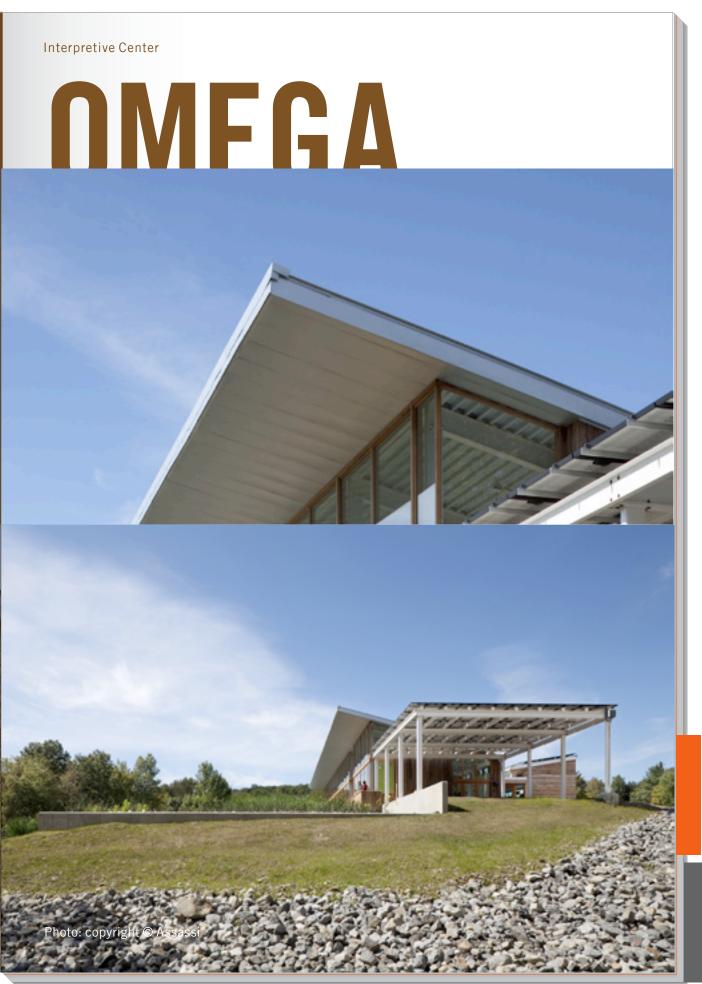
ASSOCIATION

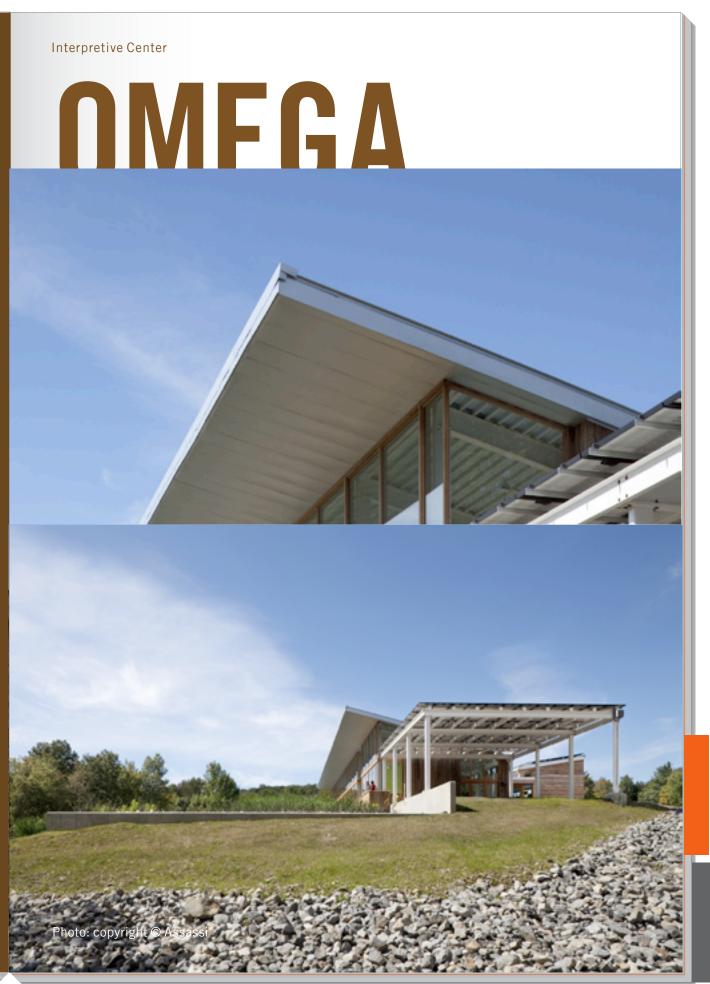
helpholycross.org

PRESERVATION

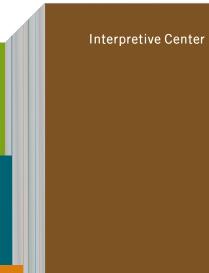
WAYNE TROYER

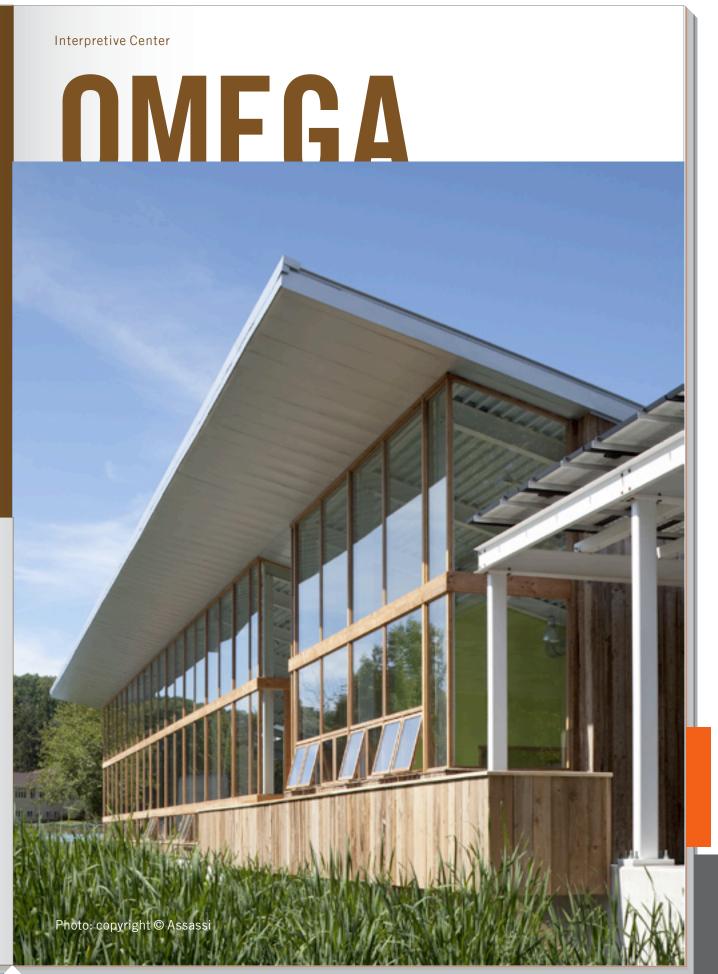
ARCHITECTS


studiowta.com


prcno.org

RESOURCE CENTER


Interpretive Center		5200 Dauphine Street					
MATERIAL	ORIGINAL USE	REUSE APPLICATION	SOURCE	SOURCE LOCATION	QTY	REFURBISHMENT	
Cypress	Exterior siding	Interior wainscot	On-site	On-site	1,070 Sq ft		
Lumber	Wood framing in St. Bernard Housing Project	Wood flooring	Offsite, vendor: Jim Walters Importer/ Exporter	New Orleans, LA	2,700 Sq ft 4,200 Lb	Milled s	
Tongue & groove wood	Wood flooring	Ceiling paneling	On-site	On-site			
Structural- grade wood	Wood framing	Trusses	Offsite, vendor: Albany Woodworks	Albany, GA			
Wood	Varied	Millwork	On-site	On-site			
Wood	Varied	Exterior windows and doors	On-site	On-site		Milled	
Doors	Interior doors	Interior doors	On-site	On-site			
129							



Interpretive Center

OMEGA CENTER

KEY INFO AND REUSE-RELATED PROJECT TEAM MEMBERS

PROJECT NAME Omega Center for Sustainable Living **TOTAL PROJECT** COST (LAND EXCLUDED) \$3.2 million

LOCATION Rhinebeck, NY

YEAR COMPLETED 2009

PRIMARY USE Educational, Wastewater Treatment Facility, Interpretive Center

CONSTRUCTION TYPE New construction

131

CERTIFICATIONS LEED-NC Platinum (pending), Living Building Challenge Certification

SIZE 6,200 Sq ft

CLIENT/OWNER Omega Institute for Holistic Studies

REUSE

ARCHITECT **BNIM Architects**

CONTRACTOR David Sember Construction

CONSULTANT PlanetReuse

INSTITUTE FOR HOLISTIC LIVING DEMONSTRATES ULTIMATE SUSTAINABILITY

The Omega Center for Sustainable Living, located on 195 acres in the Hudson River Valley, is the newest building at the Omega Institute for Holistic Studies. The Institute, an educational retreat center dedicated to personal and social change, developed the new building to be a natural wastewater treatment facility and an innovative education center. It includes learning space for the community as well as a research facility that focuses on wetland composition and ecology. Sustainability is a core part of the Omega Institute's mission, reflecting their ideals of the holistic relationship people should have with one another and with nature.

The project team received the mandate to make Omega Center the greenest building possible, leading them to pursue both a LEED Platinum rating and Living Building certification. The Living Building Challenge (LBC), for which the Omega Center is a pilot project, is a sustainability standard developed by the Cascadia Region Green Building Council. It's framed around seven performance categories, including energy, materials and beauty. LBC's goal is to promote the most advanced measures of social, environmental and economic sustainability possible

133

today. From minimizing the carbon footprint to providing significant cost savings, material reuse played an integral role in helping the Omega Center for Sustainable Living set a new standard for sustainable building.

132

Omega Center

Reclaimed cypress wood siding came from mushroom farms.

"I WOULD USE REUSED WOOD ON EVERY PROJECT."

- David Sember, contractor

DESIGN FOR REUSE HIGHLIGHTS

- Architect Brad Clark of BNIM notes that the firm approached Skip Backus, executive director of the Omega Institute, with the draft LBC guidelines early in the project. The client quickly signed on and the building's initial design focused on meeting this standard.

— Dave Sember Construction joined the team halfway through the construction documents phase. Sember had no prior experience with reuse, but he undertook extensive materials research. Unprompted by BNIM, he began sourcing materials online such as wood from mushroom farms.

- The LBC has specific requirements about the maximum distances that materials can be transported. In general, wood must hail from within 500 miles of the project. It would have been expensive to buy new FSC (Forest Stewardship Council) that met this requirement. Instead, the project team procured reclaimed wood within the distance perimeter for a 70 percent cost savings over new FSC wood.

— Sember discovered the high costs associated with new, locally sourced wood at the beginning of the construction process. This left a window of one month to find the

Omega Center

reclaimed materials. In addition to his own research, Sember brought on PlanetReuse, a materials broker, to help source and procure materials.

- BNIM decided early on to use wood extensively in the project. It tied in well to Omega's holistic vision and its bucolic setting. Reclaimed materials such as the interior paneling, originally from tobacco warehouses, bring a distinctive look and tactility that is in harmony with this context.

- Reused materials include wood beams from mushroom farms in Pennsylvania used as exterior siding, beech from tobacco warehouses that serve as interior paneling, interior doors from a hospital and a mill, and dimensional lumber and plywood from President Obama's Inauguration stage which find renewed life as framing and sheathing.

- Over 52,000 pounds of reclaimed wood were used in this project. This represents over 90 percent of the total wood used overall.

3

CONSIDER A REUSE BROKER

Reuse brokers, such as PlanetReuse, are emerging to serve clients, architects and contractors in their material sourcing needs. A good broker should handle chain of custody documents (bill of sale and certificate of documentation), engineering reports, and coordination around refurbishment, transport and storage for all reclaimed materials. For the Omega Center, this support helped the contractor overcome a very short timeline.

SAVE MONEY WITH **RECLAIMED MATERIALS**

During construction it became clear that new FSC wood had a significant price tag. Reclaimed wood provided considerable cost savings. This savings enabled the team to balance increased costs elsewhere due to other green project components.

Specifications can be written like performance standards. A project team should consider how flexible their "design" is to allow for use of available reclaimed materials. BNIM originally specified maple as the interior paneling. Benjamin ultimately found reclaimed beech at a cheaper price that satisfied the performance requirements.

USE REUSE TO SUPPORT SUSTAINABILITY GOALS

The LBC promotes building to the highest sustainability level possible. Reclaimed materials are the ultimate form of recycling. Reusing materials that otherwise would become waste can significantly reduce our carbon footprint. Use of culturally rich elements like wood from the inaugural stage and aesthetic pieces like the wood from the mushroom farms contributed to the LBC's broader view of sustainability.

135

134

Omega Center

LEARN MORE

BNIM ARCHITECTS www.bnim.com

OMEGA CENTER FOR SUS-TAINABLE LIVING www.eomega.org/omega/about/ <u>ocsl</u>

PLANETREUSE www.planetreuse.com

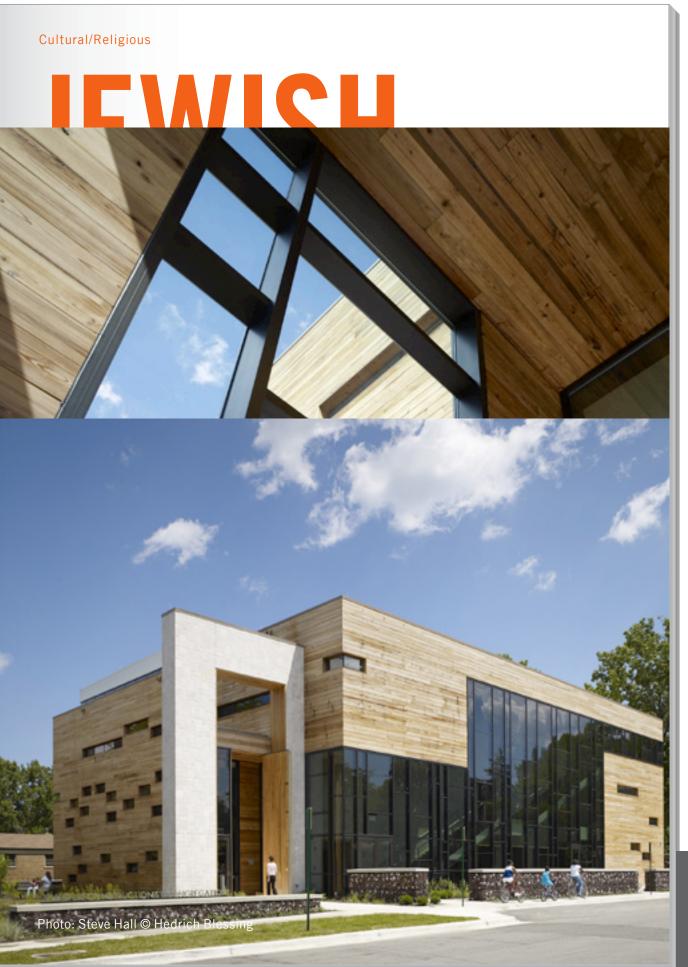
Exterior siding detail.

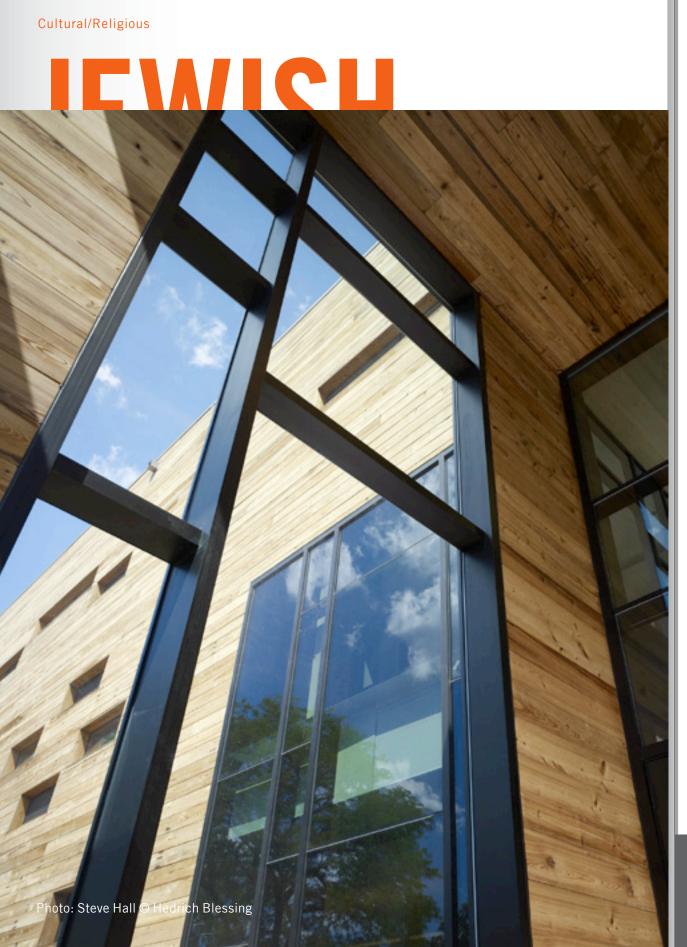
--- "Flow," publication by BNIM

p. 133,135 Photos: Copyright © Assassi

Interpretive Center			Omega Center			
MATERIAL	ORIGINAL USE	REUSE APPLICATION	SOURCE	SOURCE LOCATION	QTY	REFURBISHMENT
Cypress beams	Beams in mushroom farm buidlings	Exterior siding	Offsite, deconstruc- tion project	Pennsylva- nia		Milled
Beechwood	Tobacco Warehouse	Interior paneling	Offsite, deconstruc- tion projects		550 Sq ft	Milled
Dimensional lumber	Wood framing in old tobacco warehouses	Wood framing	Offsite	Pittsburg, PA	3,766 Bd ft	Milled
2x dimen- sional lumber and plywood	Framing and platform in Obama in- auguration stage	Framing and interior paneling	Offsite, deconstruc- tion project		1,411 Bd ft	N/A
2x dimen- sional lumber and plywood	Joists and beams	Framing and sheathing	Offsite, deconstruc- tion project		12,620 Bd ft	
Interior doors	Interior doors	Interior doors	Offsite, deconstruc- tion project		4 Doors	N/A
Toilet par- titions and accessories	Toilet par- titions and accesso- ries	Toilet par- titions and accessories	Offsite, deconstruc- tion project			
Timbers	Wood framing	Interior trim	Offsite, deconstruc- tion project		807 Bd ft	Milled
Wood doors	Doors	Interior doors	Offsite, deconstruc- tion project			N/A

CULTURAL/ RELIGIOUS


141Jewish Reconstructionist Congregation153Long Center for the Performing Arts


Cultural/Religious

"REUSE FIT RIGHT INTO THE" COMMUNITY. AND SO THE BUILDING, WHAT IT IS AND HOW WE GOT THERE, CONTINUES TO MATCH UP WITH THE PEOPLE WHO ARE GOING TO USE IT."

—Donald Rutledge, client's project manager, the Long Center

Whether it's a house of worship or a home for the arts, cultural and religious buildings hold special significance in our communities. The institutions they contain offer opportunities for communities to come together or to celebrate our heritage. By building in a conscientious way that honors the values or memories of a community, material reuse can bring visibility and tactility to the intangible. In the Jewish Reconstructionist Congregation, the architects used reclaimed cypress to echo the wood-clad synagogues of Eastern Europe. The architects of the Long Center for the Performing Arts retained a connection to a beloved icon by reusing its distinctive colorful metal panels prominently. These two projects illustrate how a building can embody a community's beliefs and cultural mores as well as the process it takes to get there.

Cultural/Religious

Cultural/Religious

JEWISH **RECONSTR-**UCTIONIST

KEY INFO AND REUSE-RELATED PROJECT TEAM MEMBERS

PROJECT NAME Jewish Reconstructionist Congregation

YEAR COMPLETED

LOCATION

2008

TYPE

Evanston, IL

PRIMARY USE

CONSTRUCTION

New construction

Assembly

TOTAL PROJECT COST (LAND EXCLUDED) \$7.6 million

CERTIFICATIONS LEED-NC Platinum

SIZE

31,600 Sq ft

Architects

CLIENT/OWNER Jewish Reconstructionist Congregation

ARCHITECT **Ross Barney**

141

ENGINEER Associates

> SUSTAINABILITY CONSULTANT Environmental **Building Consultant**

ciates

CONTRACTOR Bulley & Andrews

STRUCTURAL C. E. Anderson &

LEED CONSULTANT Helen Kessler AssoCultural/Religious

Cultural/Religious

BUILDING SACRED COMMUNITY

More than a decade ago, the Jewish Reconstructionist Congregation (IRC) came face-to-face with the fact that their old synagogue building in Evanston, IL no longer met their needs. The congregation took a hard look at their options, including adapting the existing structure, relocating to a new site, or tearing down and replacing the old building. With their analysis indicating the latter solution to be the most cost effective, the congregation set out to create a new home that would reflect their spiritual and environmental values.

At the project's inception, the IRC board came to a consensus that the new building would be the as green as feasible, said Rabbi Brant Rosen, a decision that paved the way to using reclaimed materials and ultimately led to the first LEED Platinum place of worship. Underlying the congregation's resolve is an environmental ethic built on the Jewish principle Bal Tashchit, which teaches "do not destroy or waste," as well as their application of the principle of Tikkun Olam, "repairing the world," to environmental action.

THE DESIGN PROCESS: **REUSE AS REBIRTH**

stones.

142

In Ross Barney Architects, the congregation found a partner who shared their commitment to pursuing sustainable strategies and who had experience incorporating reused materials in their designs. The congregation, which takes their role as educators seriously, wanted the building to be a visible example of sustainable design. The architects identified the exterior cladding as a place where the aesthetic power of a reused material could have the most impact. Originally, they envisioned the exterior walls as gabions filled with demolition rubble from the former synagogue. A traditional method of building walls, dams and dikes, gabions typically consist of wire frameworks filled with earth or

Although the congregation was not comfortable with the look of this initial cladding concept, it piqued their interest about the possibilities of reused materials. Looking for alternatives to the gabions, the project team drew upon a tradition of wood-clad synagogues from the shtetl era, a period that often stands to symbolize 19th century Eastern European Jewish culture. The clients were drawn to the idea of reimagining this culturally significant building type in a contemporary setting. The architects were enthusiastic about how

the character of reclaimed wood, with its nail holes and irregularities, would aesthetically express this reinterpretation.

The architects initially designed the building with a rainscreen cladding made from an unspecified source of reclaimed wood. (A rain screen is a weatherresistant surface that stands off from the structural wall, repelling moisture and allowing air to circulate behind it to keep the wall dry.) Later, when they located reclaimed cypress for the project, they developed the specific milling and installation details.

In the process, the architects learned how important it is for reused-material specifications to be somewhat flexible. Ross Barney's original specifications for the siding stipulated a minimum board length. To meet this spec, the contractor wound up ordering excess wood. Had the architects realized the procurement implications of the board length, they would have relaxed the specification, and directed the contractor to intersperse shorter boards with longer ones to achieve their aesthetic intentions with less wood.

The architects returned to the gabion concept for the design of low walls around the site's gardens and children's play area. As visitors approach the synagogue, they encounter these unusual walls, which are filled with a mix of waste brick and rubble from local demoli-

144

Jewish Reconstructionist Congregation

tion projects. Though the debris is not from the former synagogue, these pieces of crushed masonry nonetheless relate a story of demolition and rebuilding that links the old with the new.

Among the congregation, however, the gabion walls remain controversial. For some, the rubble brings to mind destruction, or perhaps even the Holocaust. But for Rabbi Rosen, "This is destruction that would have been discarded into some landfill and in fact it was reclaimed, renewed, reused. For me it represents rebirth, not destruction," he said.

Reclaimed Cypress was used for interior wall and ceiling paneling, as well as library shelving.

"WE HAVE LEARNED THAT IT IS NOT THE BUILDING BUT THE PROCESS OF BUILDING THAT CREATES SACRED COMMUNITY."

- Rabbi Brant Rosen, client

Cultural/Religious

SOURCING REUSED **MATERIALS: A TEAM EFFORT**

During the schematic design phase, the architects started their search for salvaged wood for the rain screen and the interior slat walls of the sanctuary and chapel. Because this was a project for a private client, they were able to procure materials early, unhindered by requirements that public projects typically have for competitive vendor sourcing. Starting this search early proved critical since the process of finding appropriate materials required considerable effort.

Initially, they found cypress logs from freight that had been dumped from shipwrecks in the Great Lakes and the Gulf of Mexico. But when they had sample boards milled, the wood's greenish hue did not match their aesthetic intentions. Ultimately, they found cypress that had a color and grain they liked; the wood came from dismantled mushroom-growing buildings in the Northeast.

Since this cypress was located before the construction contract was put out to bid, the congregation pre-purchased the wood and made its use a requirement of the contract. For the contractor, Bulley & Andrews, procurement and scheduling of the reclaimed wood was no more difficult than using virgin material. All told, they used about 18,000 square

To save money and resources, a rock crusher was brought on site to crush 2,700 tons of concrete and other masonry from the demolished synagogue. The former basement walls were left standing and backfilled with the crushed debris to form the new foundation.

As the project progressed, the contractors became increasingly proactive about looking for reused materials. They found reclaimed black walnut for the bimah, the raised dais in the main sanctuary. Ordinarily, municipal trees are mulched when they have

Jewish Reconstructionist Congregation

feet of the cypress, with the supplier delivering it in stages as it was needed, allowing the contractor to work at their own pace without storage concerns.

Construction of the gabion walls took place later in the construction process, as these were freestanding site walls in the landscape. Because the team had used all the crushed masonry from the old synagogue for the new foundation's fill, they had to seek other sources of debris for the gabion fill material. The architects gave the contractors loose parameters, stipulating that the fill be local and not virgin material but remaining open about its other qualities. The contractors located broken waste bricks from a local pre-cast manufacturer, and additional brick and concrete from local demolition projects.

to be removed, which is a shame since the wood is often high quality hardwood. These particular black walnuts, cut down from Chicago parks, were milled into 1,000 square feet of flooring for the bimah.

Four crimson maples that could not be saved on the property were cut down and milled locally. These were used as the cladding for the synagogue's ceremonial door, helping to keep alive the congregation's connection to its history.

Exterior view with reclaimed Cypress.

"THIS IS DESTRUCTION THAT WOULD HAVE BEEN DISCARDED INTO SOME LANDFILL AND IN FACT WAS RECLAIMED, RENEWED, ŔEUSED."

- Rabbi Brant Rosen, client

Jewish Reconstructionist Congregation

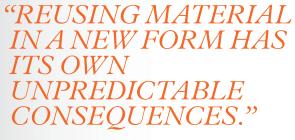
UNPREDICTABILITY IS PREDICTABLE WITH SOME **REUSED MATERIALS**

Quality control in the cypress milling process was the only significant reuse challenge the project team experienced. Although having the cypress milled to size for the exterior cladding and interior slat walls entailed only a very small cost premium—at that time negligible compared to new wood—the supplier was not very experienced and some of the wood they delivered was unsuitable.

Irregularities in the boards, including damaged ends that had to be cut out onsite, meant the contractors had to buy 5 to 10 percent more wood than had initially been planned. This also significantly increased the labor required to prepare and install the wood.

Architect Michael Ross admits that "reusing material in a new form has its own unpredictable consequences." But overall, the team found the process of building with reused materials to be quite manageable. One reason for the success of the construction process was that Bulley & Andrews had been retained at the outset of the project for pre-construction services, including cost estimating. As a result, they became very familiar with the architect's and client's intentions, including the commitment to material reuse. JRC

Cultural/Religious


Jewish Reconstructionist Congregation

did have four other pre-qualified general contractors bid on the project, but ultimately awarded it to Bulley & Andrews.

Ceiling paneling of reclaimed Cypress.

The project team earned both the resource reuse credits, MR 3.1 and 3.2. With the help of a LEED consultant, they rigorously monitored reused material selection from design development forward, tracking the materials against the thresholds required by the LEED credits. In addition, one of the project team's weekly meetings every month was devoted to ongoing evaluation of LEED documentation.

- Michael Ross, architect

147

PATH TO CERTIFICATION

To achieve Platinum certification, it's important to address the LEED process from the first conversations with the client, said Ross. Most of the strategies they employed to achieve LEED Platinum, including many regarding materials, were in place before schematic design.

SHARING THE STORY WITH THE LARGER COMMUNITY

The salvaged wood siding and interior slat walls look dramatic, said Rabbi Rosen, but there is more to them than meets the eye. "They have a story behind them," he said, "so you don't really understand the full meaning of them until they're explained to you."

Education is central to the congregation's view of its role in the larger community. During construction, Rosen maintained a blog that he used to share information about the building's progress, including the use of reclaimed materials. With the building complete, the congregation developed a formal docent program and an accompanying manual about the building, and gives weekly guided tours. A section of IRC's website, "Green Synagogue," champions the concept of sustainability in relation to the congregation's values, supplies detailed information about the building's green features, and lists resources for others looking to build and live green.

"We're on the map as being the first LEED Platinum house of worship in the world," said Rabbi Rosen, "and that means we have to pony up in terms of our advocacy of environmental issues."

23

148

Jewish Reconstructionist Congregation

Gabion walls were filled with broken brick from demolition.

"WE'RE ON THE MAP" AS BEING THE FIRST LEED PLATINUM HOUSE OF WORSHIP IN THE WORLD, AND THAT MEANS WE HAVE TO PONY UP IN TERMS OF OUR ADVOCACY OF ENVIRONMENTAL ISSUES."

- Rabbi Brant Rosen, client

LESSONS LEARNED

DON'T WRITE

Cultural/Religious

SPECS IN STONE Specifications must clearly define critical elements such as structural properties, but can sometimes be more open for certain aspects of the design, especially those that relate to reused materials. On the JRC project, flexibility around the board lengths for the exterior cladding would have reduced the amount of wood needed and lowered labor costs.

INCORPORATE REUSE

The process of researching and

procuring reclaimed materials

started their search early in the

schematic design phase, which

allowed them to find materials

that are featured prominently in the building's design, such as

the beautiful salvaged cypress.

Having the contractor on the

team early, even if only in an advisory capacity, can help

establish shared priorities and

for including reuse materials.

SPOT OPPORTUNITIES

As the synagogue's construction got underway, the

IN UNEXPECTED PLACES

architects and contractors

began to recognize possibilities for sourcing and incorporating

salvage in unplanned for ways,

such as the black walnut for the

understanding about intentions

STRATEGIES EARLY

ENGAGE THE

CONTRACTOR EARLY

INVOLVE THE COMMUNITY The decision to build a LEED Platinum building captured the congregation's imagination and boosted participation in the project's capital campaign. According to Rabbi Rosen, the congregation ultimately raised more money than needed to construct the synagogue building.

GET THE CLIENT'S SUPPORT

Having a dedicated and engaged client who was flexible, open minded, willing to take some risks, and committed to sustainability made it easier to achieve LEED Platinum and incan be lengthy. JRC's architects corporate reclaimed materials.

Bimah floor and the crimson maples for the ceremonial doorway.

149

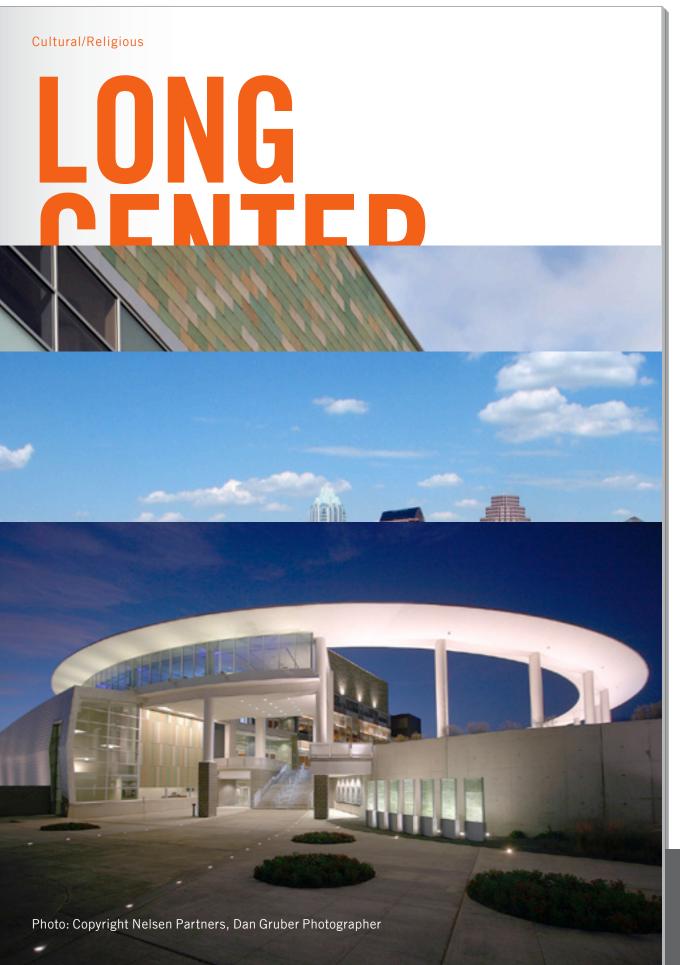
Jewish Reconstructionist Congregation

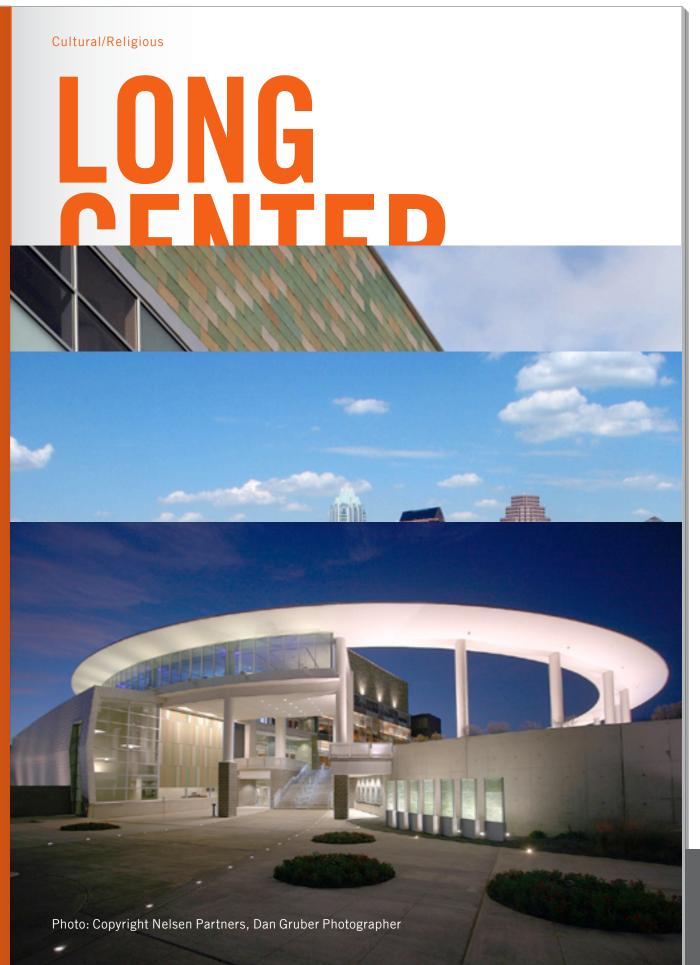
LEARN MORE

AIA COTE CASE STUDY aiatopten.org/hpb/overview. cfm?ProjectID=1304

BULLEY & ANDREWS, LLC bulley.com

JEWISH RECONSTRUCTION-**IST CONGREGATION** jrc-evanston.org/green_ synagogue

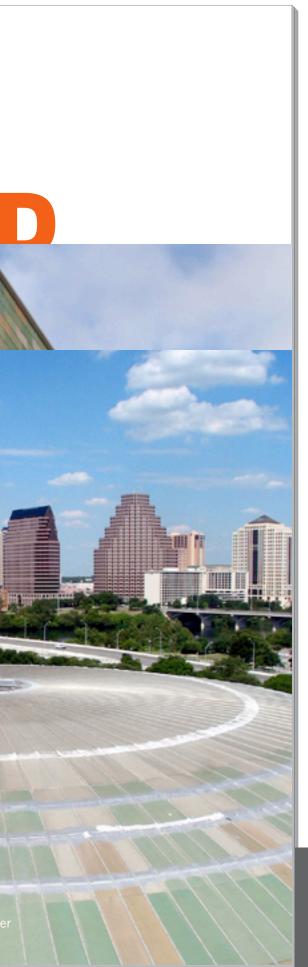

RABBI BRANT ROSEN'S CON-STRUCTION PROCESS BLOG en.wordpress.com/tag/jrc-construction-diaries

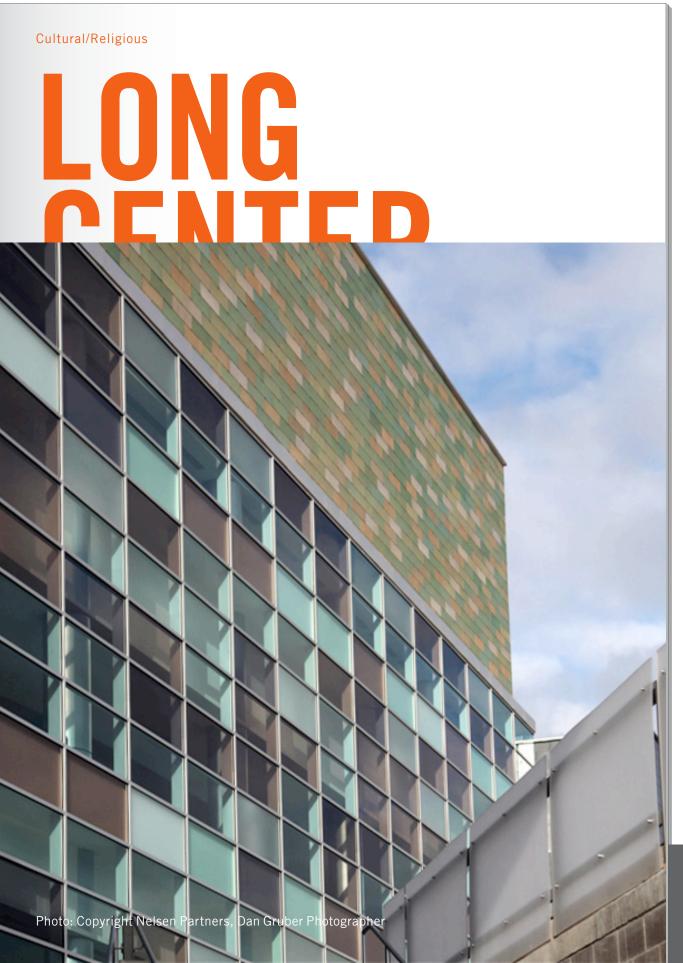

ROSS BARNEY ARCHITECTS

www.r-barc.com

p. 144, 146, 147, 148 Photos: Steve Hall © Hedrich Blessing

Cultural/Religious		Jewish Reconstructionist Congregation				
MATERIAL	ORIGINAL USE	REUSE APPLICATION	SOURCE	SOURCE LOCATION	QTY	REFURBISHMENT
Cypress wood		Exterior siding, interior paneling, library shelving	Offsite, de- construction project		18,000 Sq ft	Milled
Concrete and Brick	Foundation masonry	Site fill	On-site	On-site	2700 Tons	Crushed
Black Walnut Trees	Trees	Wood flooring	Offsite, vendor: Municipal Parks	Chicago, II	1000 Sq ft	Milled
Broken brick	Demolition debris and brick man- ufacturing waste	Gabion wall fill	Offsite, vendor: brick manu- facturer and other	Chicago, II	1780 Sq ft	N/A
Maple Wood Trees	Trees	Ceremonial door	On-site	On-site	240 Sq ft	Milled




LONG

del inter

Photo: Copyright Nelsen Partners, Dan Gruber Photograph

Cultural/Religious

LONG CENTER

KEY INFO AND REUSE-RELATED PROJECT TEAM MEMBERS

PROJECT NAME Long Center for the Performing Arts

TOTAL PROJECT

YEAR COMPLETED 2008

PRIMARY USE Assembly

LOCATION Austin, TX

CONSTRUCTION TYPE **New Construction** COST (LAND EXCLUDED) \$77 million

SIZE 168,000 Sq ft

CLIENT/OWNER The Long Center for

the Performing Arts, the City of Austin

ARCHITECT Nelsen Partners

ARCHITECT OF RECORD Zeidler Partnership

153

STRUCTURAL

Engineers Collaborative

CONTRACTOR Austin Commercial

ENGINEER Architectural

DECONSTRUCTION CONTRACTOR A&R Demolition

AUSTIN LANDMARK REBORN **AS A STATE-OF-THE ART PERFORMANCE CENTER**

The Long Center for the Performing Arts in Austin, TX developed in response to the longstanding need for a quality performing arts venue in the city. As a public-private partnership between the nonprofit Long Center for the Performing Arts and the City of Austin, the Center opened its doors not only as a theater but the permanent home of a number of local performing arts groups, including the ballet, symphony and opera.

The original project scheme, developed in 2001, called for demolishing Palmer Auditorium, a colorful mid-century domed landmark, and building a new structure. However, the difficult fundraising environment at the time made the \$125 million price tag challenging. Architect Stan Haas of Nelsen Partners, who worked for years as a pro bono advisor to the project, suggested a new approach that focused on reusing the original foundation and structure around the stage as well as salvaging materials.

Although reuse was initially implemented as a cost savings measure, the client and project team found it had innumerable benefits, not the least of which was catalyzing the project's capital campaign and infusing the building with what

154

155

Long Center

Haas refers to as the "embodied energy of memory."

Original Palmer Auditorium under construction.

"IF WE HAD NOT" **REUSED THE** STRUCTURE AND THE MATERIALS, IT WOULD HAVE BEEN HARDER TO FUND AND IT WOULD NOT HAVE ENJOYED THE [SAME] ŠUCCESS IN THE COMMUNITY."

— Donald Rutledge, client

DESIGN FOR REUSE HIGHLIGHTS

- Alex Gregg of Austin Commercial, the project's general contractor, joined the team in Design Development. Austin Commercial contributed significantly to reuse related pre-construction activities such as construction specifications and the original building's selective demolition.

— Haas and Gregg surveyed the original building extensively prior to demolition. They identified a variety of non-structural materials, such as the glass curtain wall and aluminum roof panels, that could be repurposed and inspire creative design opportunities.

-The client oversaw abatement of the original building. Then the structure underwent selective demolition, keeping the foundation and stagehouse (includes stage and supporting structure) intact. The demolition contractor set aside any material specified for reuse by the project team.

— As directed in the specifications, the materials were stored carefully between demolition and construction. The contractor stored mahogany paneling in metal containers on site to prevent moisture damage. Aluminum roof panels were stacked on pallets and taken for resizing and storage by the roof-

Long Center

ing contractor.

- Reused materials include colorful aluminum panels that adorn exterior facades and interior paneling, marble toilet partitions recut into countertops, and glass curtain wall recast into donor plaques. The ring beam that supported the dome of the old auditorium serves as an iconic architectural element in the exterior plaza.

- Over 44 million pounds of construction materials were removed from the original Palmer Auditorium. Ninety-five percent of that material was recycled or reused in the new building or projects elsewhere in the region. Notably, 60,000 square feet of the aluminum panels found new life in the walls of the Long Center.

3

Glass curtain wall turned into donor panels.

p. 155 Photo: Courtesy, Austin History Center p. 156 Photo: Copyright Nelsen Partners, Dan **Gruber Photographer**

Cultural/Religious

LESSONS LEARNED

REPURPOSE

Be open to reusing materials in a new capacity. The Palmer Auditorium's old dome was ultimately incompatible with the acoustical goals of the new facility, but the project team was able to reuse the ring beam that supported it as a prominent gateway to the new building. The roof's multi-colored aluminum panels are highly visible as exterior cladding and interior paneling.

THINK STRATEGICALLY

Material reuse doesn't have to cost more. For the Long Center, the early decision to do reuse and strategic project planning made incorporating reclaimed materials easier and more cost effective. Materials such as the marble toilet partitions and light fixtures were cost savings. New aluminum panels would have cost less, but the project team's detailed instructions for removal, resizing, and installation kept the reclaimed panels' cost reasonable. The project still came in well below market.

UNDERSTAND **INTANGIBLE BENEFITS**

Reclaimed materials can tell a powerful story. Although the decision to reuse the original structure was made because it saved \$1.5 million, reuse also had intangible benefits, said Donald Rutledge, the Director of Design & Construction for the Long Center for Performing Arts. It strengthened the community's connection to the building and propelled the capital campaign across the finish line.

BE SPECIFIC

Clarity in specifications can be key to successfully incorporating reclaimed materials. The Long Center's specifications served as a comprehensive reference guide, spelling out the materials to be selected and structure to be preserved, the ways in which these materials were to be preserved prior to installation and by whom, and how and when they were to be refurbished and installed. As such, subcontractors were easily able to provide reasonably priced bids for this aspect of the project.

156

Long Center

LEARN MORE

AUSTIN COMMERCIAL austin-ind.com/commercial

THE LONG CENTER thelongcenter.org

NELSEN PARTNERS nelsenpartners.com

ZEIDLER PARTNERSHIP zeidlerpartnership.com

"WITH PROPER PLANNING, REUSE CAN BE DÓNE WITHOUT ADDED COST OR EXPENSE TO A PROJECT."

- Austin Gregg, contractor

Cultural/Religious Long Center						
MATERIAL	ORIGINAL USE	REUSE APPLICATION	SOURCE	SOURCE LOCATION	QTY	REFURBISHMENT
Concrete	Perimeter ring beam	Architectural feature	On-site	On-site		
Steel	Structur- al steel framing	Structural steel framing	On-site	On-site	5 Tons	Melted and recast
Steel	Compres- sion ring	Landscape element	On-site	On-site		Refinished – lead paint sealed in
Aluminum	Roof shingles	Exterior and interior paneling	On-site	On-site	60,000 Sq ft	Cut-to-size
Marble	Restroom stall parti- tions	Countertops	On-site	On-site		Cut-to-size
Wood	Interior paneling	Interior paneling	On-site	On-site		Cut-to-size and refin- ished
Glass	Curtain wall	Donor plaques	On-site	On-site		Melted and recast
Interior lighting	Interior lighting	Interior lighting	On-site	On-site		Retrofitted

GLOSSARY

ABATEMENT

The removal of a hazardous or toxic coating (e.g. lead paint may be reused, but or asbestos) from a building material.

ADAPTIVE REUSE

The process of adapting existing (typically old) materials or structures disassembly of for purposes other than those initially intended. Oftentimes a building's historical features will remain intact even if the use changes.

CONSTRUCTION MANAGER

Individual who directs or partial building the construction process and coordinates all contractors. In some cases the construction manager is an agent of the general single entity is in contractor, overseeing charge of both design a group of subcontractors. In other project delivery structures, like multiple prime, the construction manager may oversee contractors contracted to separate entity, typically the client.

CONSTRUCTION WASTE MANAGE-MENT

The separation of recoverable waste materials generated during construction and remodeling from landfill waste. These separated materials may be scraps of new building materials or

removed from the site. Separated materials this is not necessarily the case. The materials are most often recycled.

DECONSTRUCTION

The careful, selective building components for reuse. Deconstruction is an alternative to demolition, which often leaves materials unrecoverable.

DEMOLITION

The planned, rapid destruction of a full structure.

DESIGN BUILD

A project delivery system in which a and construction. Unlike a designbid-build delivery system in which design and construction typically occur in distinct phases, distinct phases are not required in designbuild.

DESIGN FOR DISASSEMBLY

A design strategy to maximize the recovery and reuse of building systems, components, and materials. It is meant to ease disassembly or reconfiguration. Design for disassembly includes

old building materials strategies such as building with single-material parts and using fasteners instead of adhesives. (also called **design** for deconstruction or design for reuse).

Glossary

EMBODIED CARBON

A measurement of the carbon impact of a product's lifecycle, from cradle to grave, including extraction, manufacture, production, and disposal. Embodied carbon is different from embodied energy because it takes into account the intrinsic physical properties of a product. For instance, cement emits about half of its embodied carbon because of a chemical process unrelated to energy use.

EMBODIED ENERGY

An assessment of the energy required to extract raw materials from nature, plus the energy used in primary and secondary manufacturing activities to provide a finished product and to dispose 3.2) based on cost, of that product.

FIXED-PRICE CONTRACT

A contract structure in which a contractor agrees to complete a predetermined scope of work at a predetermined fee.

FOREST STEWARD-SHIP COUNCIL

<u>A nonprofit organi-</u> zation devoted to encouraging the responsible management of the world's forests. The FSC is considered one of the world's leading standard-setting and accreditation services in the area of sustainable forestry.

GRADE

A classification of the quality of lumber based on factors including the amount and size of knots, twist, and cracks in the material. Many wood types have their own grading systems; there is no universal standard for all woods.

LEED[™] MATERIAL **REUSE CREDITS**

The credits within the USGBC's LEED rating system that are available to buildings which incorporate material reuse. The requirement for credit is that reclaimed materials account for at least 5% (Credit 3.1) or 10% (Credit of the total value of materials on the project.

Learn More

LIFECYCLE ASSESSMENT

The Lifecycle Assessment (LCA) is an environmental assessment that considers the entire value chain involved in producing, using, and disposing of a product. It includes data points such as energy consumption and related greenhouse-gas emissions.

CHALLENGE

An annual competition for "lifecycle buildings," which are buildings that incorporate strategies of adaptability and disassembly to allow recovery of all building wood a machine that systems, components, removes material. and materials.

LIVING BUILDING CHALLENGE

A certification program all contractors are that is considered the most advanced measure of sustainability in the built environment. The program has stringent requirements for the materials and energy impact of a building.

MATERIAL EXCHANGE

A service that connects individuals and entities wishing to offload materials and products with those in need. Many exchanges are web-based, but some also have a physical warehouse or retail component.

MATERIAL REUSE

The act of incorporating reclaimed materials into a new assembly.

MATERIALS BROKER materials. Recycling

Consultants that locate and connect reclaimed materials with designers, owners, reuse which does not or contractors for a fee. include significant They often specialize in a particular material such as paper, metals **LIFECYCLE BUILDING** or plastic, although some will handle multiple categories of materials.

MILL

To shape wood to a desired dimension and A commercial outfit profile by running the

MULTIPLE PRIME

A project delivery structure in which employed under a separate contract with the bottom of rivers. the client, rather than as sub consultants to a centuries, the lumber general contractor.

PLANE

To pass wood through a logs are those that device which smooths its surface.

RECLAIMED MATERIALS

Materials extracted from the waste stream of wood not currently that are reused without available on the further processing or with only minor processing that does not alter the nature of the material.

market.

Glossary

REFURBISH finishing or other

RECYCLING

The processing of used materials into new products to prevent waste or reduce consumption of raw includes a series of changes and/ or treatments, as opposed to treatments.

To restore a material, product or assembly through cleaning, remodification.

REUSE RETAILER

selling used and salvaged goods. Often reuse retailers have physical stores targeting specific markets.

SINKER LOGS

Logs recovered from In the 19th and 20th industry often transported logs to sawmills via rivers. Sinker sank along the way. Preserved beneath the river, these logs are often in excellent condition and offer a grade and character

SURPLUS MATERIALS

Materials and equipment that go unused or are no longer needed during a construction project either due to over-ordering or change-order. Often this material or equipment is new or only lightly used.

AGC RECYCLING TOOLKIT: DECONSTRUCTION LIFECYCLE BUILDING CHALLENGE agc.org/cs/industry_topics/environment/recycling__lifecyclebuilding.org/resources.php toolkit/deconstruction

As part of the Association of General Contractors' (AGC) collection of resources for construction professionals, the Deconstruction section provides links to many related organizations. The website includes basic tools for deconstruction, compiled by the organization.

BUILDING MATERIALS REUSE ASSOCIATION <u>bmra.org</u>

The Building Materials Reuse Association (BMRA) is a nonprofit that promotes deconstruction and material reuse through education, research, and advocacy. The website serves a wide spectrum of stakeholders including building owners, designers, government agencies, contractors, as well as the general public. It provides news, event info, discussion forums, and resources including best practices, case studies, and how-to guides.

DECONSTRUCTION INSTITUTE deconstructioninstitute.com

The Deconstruction Institute website shares information with anyone who is interested in de- and promoting reuse of surplus and discarded construction as an alternative to demolition. The materials. The website provides info about the interactive website provides a place for users to upload case studies, photos, and listings of reuse businesses, as well as engage in discussions with others.

EPA REDUCING C&D MATERIALS: RESOURCES BY MATERIAL TYPE

epa.gov/epawaste/conserve/rrr/imr/cdm/reuse.htm

The website aggragates information on reused materials from other websites. Material types include asphalt, shingles, gypsum, steel, wood, paint, and carpet among others. The website is operated by the Envirionmental Protection Agency (EPA).

The Lifecycle Building Challenge is an annual competition for lifecycle buildings (which incorporate strategies adaptability and disassembly). Competition participants include academics, students, and professionals in the construction and deconstruction industries. The website shares competition entries as well as provides resources related to deconstruction, design for disassembly, and material reuse to competition participants and others interested in lifecycle building.

REUSE ALLIANCE reusealliance.org

The Reuse Alliance is membership-based national nonprofit focused on promoting and supporting reuse-related organizations and municipal agencies. The website provides news, reuse facts, and resources to these organiza-

REUSE DEVELOPMENT ORGANIZATION <u>redo.org</u>

The Reuse Development Organization (ReDo) is a national nonprofit focused on facilitating benefits of reuse. It also provides information on ReDo's material donation program and a detailed list of reuse centers across the country.

CALCULATORS

ATHENA INSTITUTE athenasmi.org

The Institute's website provides two tools, the ATHENA Impact Estimator for Buildings and the ATHENA EcoCalculator for Assemblies, for lifecycle analysis of a building's environmental

impact. The free EcoCalculator allows analysis of individual assemblies within a building (i.e. wall, floor, roof). The *Impact Estimator* is available for purchase and allows analysis of an entire building. Both tools factor the environmental impact of building materials from a cradle-to-grave perspective.

BUILDING MATERIALS REUSE CALCULATOR

deconstructioninstitute.com/download.php?dow_ ID=19

The Building Materials Reuse Calculator is a tool for gauging the benefits of material reuse. It measures the amount of savings that reclaimed materials provide from the negative environmental impacts (e.g. greenhouse gas emissions and embodied energy) resulting from extracting, processing, manufacturing, and transporting new building materials.

CARNEGIE MELLON ECONOMIC-INPUT LIFECYCLE ASSESSMENT eiolca.net

The EIO-LCA estimates the materials, energy, and emissions required for and resulting from activities in our economy. Users indicate the industry and sector of a particular activity, such as the scale of the activity in dollar value. The calculator estimates the associated economic activity, greenhouse gases, energy, toxic releases, and water use in dollars. The EIO-LCA can provide a broad-level understanding of the impacts of construction for various building types, however it does not allow evaluation of the impacts of specific construction methodologies or materials.

EPA WASTE REDUCTION MODEL (WARM) CALCULATOR epa.gov/warm

The U.S. EPA's WAste Reduction Model (WARM) calculates the greenhouse gas emission savings of waste management practices. Users can compare baseline and alternative waste management practices for over thirty materials. The WARM Calculator does not recognize 'reuse' as a waste management practice but it can be a useful tool for estimating the amount of carbon offset of keeping materials out of the waste stream.

Learn More

Resources

WEST

BUILDING

index.html

RESOURCES

buildingresources.org/

San Francisco, CA

BRING RECYCLING

REUSE BROKERS & EXCHANGES

NATIONAL

AMERICAN BUILDER THE LOADING DOCK 2 GOOD 2 TOSS SURPLUS americanbuildersurplus.

BUILDER2-BUILDER.COM builder2builder.com

CONSTRUCTION MATERIAL DEPOT <u>cmdepot.com</u>

CRAIGSLIST

<u>craigslist.org</u>

diggerslist.com

OF MATERIAL

EXCHANGES

conserve/tools/

exchange.htm

THE INSTITU-TION RECYCLING

NETWORK (IRN)

wastemiser.com/index.

epa.gov/epawaste/

EPA'S LIST

DIGGERSLIST.COM

loadingdock.org

THE REUSE INSTITUTE thereusepeople.org/ **ReUseInstitute**

USED BUILDING MATERIALS EXCHANGE build.recycle.net/ <u>exchange</u>

<u>com</u>

index.aspx

REUSE RETAILERS

NATIONAL

BUILDING

<u>bmra.org</u>

habitat.org/env/

<u>restores.aspx</u>

BOSTON BUILDING MATERIALS REUSE RESOURCES ASSOCIATION bostonbmrc.org Boston, MA

EAST

BUILD IT GREEN!NYC HABITAT RESTORE bignyc.org New York, NY

THE REUSE PEOPLE COMMUNITY thereusepeople.org

TERRA MAI <u>terramai.com</u>

FORKLIFT

INC. loadingdock.org Baltimore, MD

REBUILD resourcevt.org Burlington, VT

REBUILD rebuildwarehouse.org Springfield, VA

RENEW BUILDING MATERIALS AND SALVAGE, INC. renewsalvage.org Brattleboro, VT

<u>re-store.org</u> Seattle & Bellingham WA

SECOND USE seconduse.com Seattle, WA

URBAN ORE urbanore.ypguides.net Berkeley, CA

WHOLE HOUSE **BUILDING SUPPLY &** SALVAGE driftwoodsalvage.com East Palo Alto, CA

SOUTH/CENTRAL

THE GREEN PROJECT thegreenproject.org New Orleans, LA

REBUILDING EXCHANGE rebuildingexchange.org Chicago, IL

THE REUSE CENTER thereusecenter.com Minneapolis, MN

STARDUST **BUILDING SUPPLIES** stardustbuilding.org Phoenix & Mesa, AZ

PRESERVATION **RESOURCE CENTER** www.prcno.org/shop/ salvagestore.php New Orleans, LA

WASTECAPDIRECT wastecapwi.org/ wastecap-direct/about-<u>wastecapdirect</u> Wisconsin

html PLANET REUSE planetreuse.com

THE RECYCLER'S EXCHANGE recycle.net/exchange

RE-USE CONSULT-ING reuseconsulting.com

SALVAGED BUILDING MATERIALS EXCHANGE greenguide.com/ exchange/index.html

bringrecycling.org Eugene, OR MATERIALS MATTER communityforklift.com materialsmatter.org Edmonston, MD Laguna Hills, CA THE LOADING DOCK, OHMEGA SALVAGE ohmegasalvage.com Berkeley, CA THE REBUILDING CENTER rebuildingcenter.org Portland, OR **RESOURCE YARD** resourceyard.org

Boulder & Fort Collins, CO THE RE STORE

RESTORE

restoreonline.org Springfield, MA

REGIONAL

NETWORK 2good2toss.com

BONEYARDNW boneyardnw.com

CALIFORNIA MATERIALS EXCHANGE (CALMAX) calrecycle.ca.gov/ CalMAX

GREEN RECYCLING NETWORK (GRN) greenrecyclingnetwork.

INDUSTRI-AL MATERIALS **EXCHANGE (IMEX)** <u>Ihwmp.org/home/IMEX/</u>

NW MATERIALSMART nwmaterialsmart.com

NYC WASTEMATCH wastematch.org

REBUILDING EXCHANGE rebuildingexchange.org

WASTE XCHANGE wastexchange.org

Resources

INCORPORAT-

CIVIC

EDUCATION

HOUSING

OFFICE

RETAIL

Benny Farm-

Chartwell School-

Index

PROJECT TYPE

Portola Valley Town Center-

Sidwell Friends Middle School -

Phillips Eco-Enterprise Center -

Mountain Equipment Co-op —

Alberici Corporate Headquarters -

& Student Community Center

Eastern Sierra House-

Vancouver Materials Testing Facility -

University of Texas School of Nursing -

17

29

39

69

77

89

-107

Char Vanc Easte Benr Jewis Moui Otta Ome Oper Phill Port Sidw Long Univ

Alber

& Sti

ndicates on-site deconstruction

Ottawa & Winnipeg	*
INTERPRETIVE CENTER Operation Comeback 5200 Dauphine — 122 Omega Center for Sustainable Living — 132	

CULTURAL/RELIGIOUS

Jewish Reconstructionist Congregation —	141
Long Center for the Performing Arts —	153

PUBLICATIONS, FILMS, AND PODCASTS

et al for U.S. Envi-

DESIGN FOR DIS-

BUILT ENVIRON-

MENT: A GUIDE

IN DESIGN AND

Brad Guy & Nicholas

FEDERAL GREEN

CONSTRUCTION

Dru Meadows

GUIDE FOR SPECIFI-

Ciarimboli for the City

BUILDING

of Seattle

ERS

2010

Agency 2006

PUBLICATIONS **STUDIES & GUIDES**

A GUIDE TO DECON-**BUILDING WITH** RECLAIMED STRUCTION COMPONENTS AND MATERIALS Gibeau Bill Addis 2003 2006

CRADLE TO CRADLE Wiliam McDonough & MIchael Braungart 2002

REDUX: DESIGNS THAT REUSE, **RECYCLE, AND** REVEAL Jennifer Roberts 2005

REMATERIAL: FROM TO CLOSED LOOP WASTE TO ARCHI-TECTURE Alejandro Bahamón & Maria Camila Sanjinés 2010

UNBUILDING: SALVAGING THE ARCHITECTUR-AL TREASURES OF UNWANTED HOUSES Bob Falk & Brad Guy 2007

SUPERUSE: CON-STRUCTING NEW **ARCHITECTURE BY** SHORTCUTTING MATERIAL FLOWS Ed van Hinte, Cesare Peeren, & Jan Jongert, 2005 ed. 2007

ING RECLAIMED Brad Guy & Eleanor AND SALVAGED MATERIALS AND COMPONENTS NTO CANADIAN **DESIGN FOR DECON-** CONSTRUCTION STRUCTION PROJECTS Scott Shell, Octavio Lawrence Morettin & Gutierrez, Lynn Fi<u>sher,</u> Dr. Mark Gorgolewski

ronmental Protection LEAD PAINT AND HISTORIC **BUILDINGS:** TRAINING MANUAL Dennis Livingston, Jeff ASSEMBLY IN THE Gordon, Carol J. Dyson 2010 2000

2008

LIFECYCLE CON-STRUCTION **RESOURCE GUIDE** U.S. Environmental **Protection Agency** 2008

GUIDE: SALVAGED BUILDING MATERIALS **IN NEW CONSTRUC-**TION V. 3 Scott Shell, Octavio **REMODEL: SALVAGE** Gutierrez, Lynn Fisher, et al for U.S. Environmental Protection

> WASTESPEC: MODEL SPECIFICATIONS FOR CONSTRUCTION WASTE REDUCTION, **REUSE, AND** RECYCLING Judith Kincaid, Cheryl Walker & Greg Flynn 1995

FILMS & PODCASTS

SCRAPHOUSE: SAN FRANCISCO Anna Fitch 2006, The National Geographic Channel

SUPER USE, E² **DESIGN, SEASON 3** Tad Fettig & Karena Albers 2008, PBS

USGBC PODCAST: SALVAGED MATERIAL REUSE Liz Ogbu &Tom Dietsche itunes.apple.com/

us/podcast/usgbcknowledge-exchange/ id357912494

OLD TO NEW DESIGN

167

GREEN HOME & REUSE Thor Peterson for Seattle Public Utilities Agency Sustainable Building 2006 Program

166

CONSTRUCTION TYPE

NEW CONSTRUCTION

twell School ouver Materials Testing Facility ——— ern Sierra House ———— by Farm* ————————————————————————————————————	- 77 - 69
ntain Equipment Co-op	
ga Center for Sustainable Living ation Comeback 5200 Dauphine* ips Eco-Enterprise Center ola Valley Town Center* ell Friends Middle School Center for the Performing Arts* ersity of Texas School of Nursing udent Community Center	-121 - 89 - 17 - 51 -153

ADAPTIVE REUSE

ici Corporate Headquarters* ———	97
---------------------------------	----

LOCATION

CANADA

Vancouver Materials Testing Facility —	— 29
Mountain Equipment Co-op ———	—107
Ottawa & Winnipeg	
Renny Farm	69

HEARTLAND

Alberici Corporate Headquarters ——	<u> </u>
Jewish Reconstructionist Congregation	
Phillips Eco-Enterprise Center	89

NORTHEAST CORRIDOR

Sidwell Friends M	iddle School ———
-------------------	------------------

PACIFIC

Chartwell School	39
Portola Valley Town Center — — — — — — — — — — — — — — — — — — —	17

SOUTH CENTRAL

Operation Comeback 5200 Dauphine	——121
Long Center for the Performing Arts –	——153
University of Texas School of Nursing	<u> </u>
& Student Community Center	

UPPER NORTHEAST
Omega Center for Sustainable Living ——131

WEST

7
7

DESIGN FOR DISASSEMBLY

Index

Chartwell School	- 39
Mountain Equipment Co-op Ottawa ———	-107
Omega Center for Sustainable Living ——	-131

LEED MR 3.1/3.2 CREDIT ACHIEVED

Alberici Corporate Headquarters ——	— 97
Chartwell School	— 39
Jewish Reconstructionist Congregation -	—141
Omega Center for Sustainable Living —	—131
Portola Valley Town Center — — — — — — — — — — — — — — — — — — —	— 17
Sidwell Friends Middle School ———	— 51

Learn More

Index

MATERIALS BY CSI (REUSE APPLICATION)

CONCRETE (DIV. 3) Long Center for the Performing Arts ——	153	FIN Ben
Long Center for the Ferforming Arts		East
MASONRY (DIV. 4)		Mou
Benny Farm — Mountain Equipment Co-op ————	— 69	Otta
Mountain Equipment Co-op	— 107	Phil
Ottawa & Winnipeg	00	Port
Phillips Eco-Enterprise Center ——— Sidwell Friends Middle School ———		Sidv Vano
University of Texas School of Nursing $-$	— 51 — 59	
& Student Community Center		SPE Long
METALS (DIV. 5)		Ome
Alberici Corporate Headquarters ——— Eastern Sierra House	— 97	Phill
Eastern Sierra House —	— 77	
Long Center for the Performing Arts —		EQU
Mountain Equipment Co-op ———— Ottawa & Winnipeg		Vano
Phillips Eco-Enterprise Center —	— 80	FUR
		Albe
WOOD, PLASTICS, COMPOSITES (DIV.		Lon
Benny Farm		Phill Port
Benny Farm Chartwell School ————— Eastern Sierra House ————————————————————————————————————		Port
Jewish Reconstructionist Congregation	— 141	PLU
Jewish Reconstructionist Congregation Long Center for the Performing Arts —	—153	Phil
Mountain Equipment Co-op ———————————————————————————————————	— 107	Vano
Omega Center for Sustainable Living —	— 131	HEA
Operation Comeback 5200 Dauphine –	—121	Ben
Phillips Eco-Enterprise Center ———	— 89	Vand
Portola Valley Town Center — Sidwell Friends Middle School — —	— 17	
Phillips Eco-Enterprise Center —	51	ELE
Phillips Eco-Enterprise Center —	- 89	East Lons
THERMAL & MOISTURE PROTECTION	(DIV. 7)	Vano
Chartwell School	<u> </u>	V arit
Jewish Reconstructionist Congregation	— 141	EAR
Mountain Equipment Co-op ———	— 107	Albe
Ottawa & Winnipeg	4	Jewi
Portola Valley Town Center	— 17 50	Port
University of Texas School of Nursing – & Student Community Center	— 59	EXT
		Albe
OPENINGS (DIV. 8)		Long
Eastern Sierra House	— 77	
Jewish Reconstructionist Congregation		UTI
Omega Center for Sustainable Living —	— 131	Albe
Operation Comeback 5200 Dauphine –		
Phillips Eco-Enterprise Center ——— Vancouver Materials Testing Facility —	— 89 — 29	ELE Albe
	29	Dhill

Phill

SHES (DIV. 9)	
y Farm ern Sierra House ntain Equipment Co-op va & Winnipeg	69 77 107
ps Eco-Enterprise Center la Valley Town Center ell Friends Middle School ouver Materials Testing Facility	- 17 - 51
CIALTIES (DIV. 10) Center for the Performing Arts ——— ga Center for Sustainable Living —— ps Eco-Enterprise Center —————	-131
I PMENT (DIV. 11) ouver Materials Testing Facility ———	- 29
VISHINGS (DIV. 12) ici Corporate Headquarters Center for the Performing Arts ps Eco-Enterprise Center la Valley Town Center	97 153 89 17
MBING (DIV. 22) ps Eco-Enterprise Center ——— ouver Materials Testing Facility ———	- 89 - 29
TING, VENTILATING & AIR (DIV. 23) y Farm ————————————————————————————————————	- 69 - 29
CTRICAL (DIV. 26) ern Sierra House Center for the Performing Arts ouver Materials Testing Facility	-153
THWORK (DIV. 31) ici Corporate Headquarters ——— th Reconstructionist Congregation — la Valley Town Center—	-141
RIOR IMPROVEMENTS (DIV. 32) ici Corporate Headquarters Center for the Performing Arts	- 97 -153
ITIES (DIV. 33) ici Corporate Headquarters ————	- 97
CTRICAL POWER GENERATION (DIV. ici Corporate zHeadquarters ———— ps Eco-Enterprise Center —————	48) - 97 - 89

© 2010 Public Architecture. All rights reserved. The photographs in this book are used with permission and their authors retain all rights in their possession. Designed by Studio Lin www.studiolin.org