
Jeff Amfahr, Alan Bustamante, and Paula Rome

AndrewA
Sticky Note
Rewrite this document to support design-centric agile.

Copyright © 2011 Seapine Software, Inc.

This work is licensed under the Creative Commons Attribution-Noncommercial-

No Derivative Works 3.0 United States License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-nd/3.0/us/ or send a letter to Creative

Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Seapine is proud to be a member of the Agile Alliance.

http://

Contents
Backlogs: The Foundation to Your Agile Success. 2

The Art and Science of Reliable Agile Estimating. 15

Mapping the Journey: Release and Sprint Planning . 34

Marching Along: Daily Activities. 51

Automated Testing and Agile. 71

Are We There Yet? Doneness Criteria . 83

It’s Showtime: The Sprint Review . 95

Look Back in Agile: The Sprint Retrospective. 106

Measuring Up: Progress Metrics . 122

Mixing Methodologies. 142
3

The Agile Expedition is a journey into the world of Agile. The
adventure starts with the product and sprint backlogs, hikes
through running your first sprint all the way to releasing your
product, and finishes on the other side with an exploration
of metrics. With Seapine’s Agile Service experts guiding you,
you’ll discover how Agile development can benefit your
organization and customers. Once you reach the end of the
book, you may find that you’re really at the beginning of your
Agile journey.

Becoming Agile is not easy or for the faint of heart, but as you
gain experience you will find that the transition is much more
about the journey than it is the destination. Enjoy your journey!

Welcome to the Seapine
Agile Expedition!

1

2

An organized and categorized product backlog is the
foundation of delivering what your customer needs. The
product backlog is used to prioritize customer requests and
ensure the team is working on the most important features
for your business. Agile practices work because they deliver
value to the customer in increments, and give customers the
opportunity to offer relevant feedback at defined intervals
throughout the development cycle. An outdated backlog
may cause your team to spend effort on features that are
no longer the best value for the business. Worse yet, if the
product backlog does not contain enough features to keep the
development team busy, they may sit idle until new features
are added. However, this scenario can generally be mitigated
by having the team work through technical debt.

What is the Product
Backlog?

3

Before your team starts delivering features, the Product
Owner must first build a product backlog for the product or
project. If you’re starting a project from scratch, this process is
straightforward. The Product Owner meets with the customer
and end users to discuss what critical problems the project will
solve or challenges the customer is hoping to overcome with
this product. Depending on the project, the discovery process
can take anywhere from a few hours to a few weeks to outline
enough features for the first few sprints.

If you’re working on an existing product, building the initial
backlog may be more complex. For example, a large legacy
application may have thousands of feature requests, bugs,
and other tasks that have been cataloged over the years. The
problem isn’t filling the product backlog; it’s deciding which
items are the most important for the team to work on next.
Start by adding known higher-priority features that support
your release or sprint goals. This should give the team enough
to choose from for the first couple of sprints. As the project
moves forward, the Product Owner will continually prune and
prioritize the product backlog.

Getting Started

4

Bugs
Bugs and defects are problems found by development, testing,
and end users. In a Waterfall process, testing is typically the
last step of the development lifecycle and it’s quite common
to release code that includes defects. Bugs pile up over the
years and should be included in the backlog and prioritized
accordingly.

Technical Debt
Over time, the direction and scope of a product usually
changes. Performance and scalability expectations change.
New technology or best practices become available. Everyone
can agree that it’s a good idea to update the existing solution
to address these types of issues. In practice, however, it can
be difficult for the Product Owner to prioritize them over
highly visible features requested by customers. These types of
backlog items are often referred to as technical debt because

Add Features to
the Product Backlog
Three types of work items fit in the backlog:

5

they frequently accumulate over time. Examples of technical
debt include upgrading to the latest third-party libraries,
making architectural changes to support better scalability
and configurability, or refactoring the source code for easier
maintainability in the future. These tasks need to be included
in the product backlog and prioritized along with defects so
they have visibility in the planning cycle.

New Features
Feature requests come from a variety of sources, including
end users, sales, support, and product management. They
can be the hardest to prioritize as you balance the competing
needs of satisfying your existing customer base, satisfying the
needs of near-term sales opportunities, and working toward
a longer-term vision of your product. The Product Owner
must routinely monitor these sources and arbitrate potentially
conflicting requests to ensure the backlog contains the
features that will attract new customers and build loyalty with
existing customers.

6

Next, you need to classify and prioritize the product backlog.
It doesn’t do any good to have a backlog if you can’t quickly
analyze it by different criteria. Classification and prioritization
are largely manual processes, but this goes faster than you
might expect.

When first getting started, don’t worry about organizing your
entire backlog. Find the features that are clearly high priority,
mark them as high priority, and ask the development team
to classify them as outlined below. Slowly expand prioritization
and classification to more and more of the backlog as needed,
based on your expected sprint schedule.

Organizing the
Product Backlog

To learn about organizing backlogs with TestTrack folders
and custom fields, check out our Backlog Tagging Best Practices
blog post: http://blogs.seapine.com/2010/06/backlog-
tagging-best-practices.

7

http://blogs.seapine.com/2010/06/backlog-tagging-best-practices
http://blogs.seapine.com/2010/06/backlog-tagging-best-practices

We recommend starting with the following two classification
categories: functional area and theme. Functional area is simply
the area of the product a defect, technical debt, or new feature
applies to. Developers can help classify work items because they
have an in-depth understanding of the underlying code base
in the project. For example, if refactoring the user security model
is a top priority, then planning a sprint to address that area of the
product is easier if your backlog is tagged by functional area.

Classifying by theme is really about grouping features together
to make sprint planning a smoother process. Tagging each
feature with a theme gives you greater flexibility when planning
a sprint. Let’s say that customers are struggling to find data in
the application you’re developing. If you tag your backlog with
different theme tags—usability, for example—building a sprint
to address immediate customer issues is easy. Simply pull out
everything tagged ‘usability’ and use that subset of features
to plan your sprint.

DANGER! Low priority items always seem to end up at the
bottom of the pile. This is where classification helps by making
it much easier to find related items, regardless of priority,
during planning.

Classification

8

Next, the Product Owner prioritizes the features in the product
backlog by business value. This is where the Product Owners’
understanding of the needs of their customers and end
users is critical. Although feature value may not necessarily
be quantifiable in monetary value, features in the product
backlog should have clear business value for them
to be considered for development.

Ideally, the product backlog will have the highest priority
feature at the top and the lowest priority feature at the bottom.
However, in the case of large feature sets, it may be easier to use
a bucket approach. This approach uses qualitative descriptions,
such as low, medium, and high, to group features with similar
priorities. After features are grouped into buckets, you can
refine the buckets as many times as you want. An organized
backlog, with a good classification and prioritization scheme,
is essential before the development team can start working
on the highest value features.

DANGER! Agile methodologies ensure the product reflects
what the customer needs at the end of every sprint. It’s easy
to get side tracked and prioritize features according to the
“loudest customer” or “this week’s sales opportunity.” If you
use the bucket approach, set tolerances (e.g., no more than
five in high priority) to ensure there are never more than
a certain number of items in the high priority bucket. If you
add something to the high priority bucket, you have to take
something else out.

Prioritization

9

Building and organizing the product backlog is always a work
in progress. Following an Agile methodology is about making
sure that what you’re working on is what the customer actually
needs. The Product Owner must commit to maintaining the
backlog on a regular basis for a few reasons.

First, customer needs change over time, and the backlog must
stay in sync with those changes. For instance, flip phones were
all the rage a few years back, then it was mobile phones with
QWERTY keyboards, and now it’s touch screen smart phones.

The backlog for the input device of a mobile phone these days
is much different than it was a couple years ago. The Product
Owner is responsible for staying on top of those trends and
adjusting priorities accordingly.

Maintaining the
Product Backlog

10

Implementing features can also change or eliminate the need for other
seemingly unrelated features. For example, if a feature to implement
credit card processing is in the product backlog, but another feature
to integrate PayPal has already been implemented and proves
to be better, then the credit card processing feature may drop from the
product backlog. Again, the Product Owner is responsible for managing
those changes, and better categorization can make that process easier.

Finally, the product backlog is viewable by everyone. The Product
Owner is responsible for vetting new ideas against existing ideas, and
determining whether they should be prioritized into the backlog. 11

The sprint backlog comprises the sized features that the team
selects from the product backlog for a specific sprint. The
team commits to deliver every feature in the sprint backlog
within the current sprint. To help establish quick wins and
build confidence, teams new to Scrum or other Agile methods
should take on less work than they think they can handle
in early sprints.

DANGER! It’s important for the development team to
understand the level of commitment they are making.
Unlike Waterfall, where scope often gets removed to meet
deadlines (leading to lack of trust with the customer), Agile
teams value the commitments they make in a sprint to build
trust with the customer.

Populating the
Sprint Backlog

12

Once the team knows what features will go into the sprint
backlog, the development team decomposes the features
into tasks. Tasks should be no more than 16 hours, or two
man days, in duration. This helps the team understand the
problem better and get a good idea of how much work
is involved. The team should not assign or grab a task until it
goes to work in progress. This ensures task ownership is not
pre-determined and leaves tasks open for other team
members to grab.

13

Proper planning and organization is critical to delivering what
your customers need, and that’s where product and sprint
backlogs come into play. Here’s what we learned:

�� The Product Owner is responsible for the product backlog, 	
	 prioritizing customer requests, and ensuring the team
	 is working on the most important features.

�� The product backlog can include bugs, technical debt,
	 and new feature requests, which can be organized into
	 classification categories, such as functional area and theme.

�� The Product Owner should then prioritize features in the 		
	 product backlog, typically based on business value.

�� The product backlog must be maintained on a regular
	 basis to ensure the development team is always delivering
	 the right product features.

�� The team selects features from the product backlog that
	 they will commit to delivering in the current sprint. During
	 sprint planning, the selected features are broken down into
	 their related tasks.

Backlogs
in a Nutshell

14

15

Estimating. The mere thought of it strikes fear into the
hearts of even the most stalwart project teams. The
customer wants to know how long the project will take, but
you don’t want your team locked in to a commitment they
may not be able to meet.

Relax. When it comes to estimating Agile projects, you have
nothing to fear but fear itself.

Nothing to Fear
but Fear Itself

In the beginning, you’re going to be terrible at estimating.
In fact, you’re going to downright stink at it. And that’s OK.
Estimating is more of an art than a science and, like all
art, it takes practice. It will take time for team estimates
to converge naturally.

16

As you transition to Agile, your initial estimates will be all over
the map. Even if you are an experienced estimator in other
development methodologies, expect a learning curve.
It generally takes several iterations, sometimes over the span
of months, for the team to get good at Agile estimating. This
is an important expectation to set with your team and with
management. Fortunately, Agile allows you to fine tune your
estimates as the project progresses.

17

Estimating on Agile projects occurs iteratively at the beginning
of each sprint for features and throughout the sprint for tasks.
If you’re using Scrum, then the first day of the sprint is when the
two-part sprint planning occurs. In other Agile methodologies
the planning day is broken up into two parts: release planning
and iteration (or sprint) planning. Although Ken Schwaber
and Mike Beedle do not explicitly make the distinction in their
Agile Software Development with Scrum book, Scrum’s two-part
sprint planning meeting follows essentially the same process.

When Does
Estimating Occur?

DANGER! To avoid confusion and wasted time, do not start
the first sprint with an empty product backlog. In general, the
Scrum Master should work with the Product Owner to help
populate the product backlog with features prior to the first
planning meeting.

18

During release planning, the team sizes the features in the
product backlog. Participants in the sizing effort include the
core development team (developers, testers, tech writers, etc.),
the Scrum Master, and the Product Owner or customer.

Wait, the customer? Yes, that’s right. The customer
representative—or Product Owner—needs to be involved
to clarify the value the feature provides. The Product Owner
can also provide the team with a good understanding of what
they are estimating.

Who is Involved
with Estimating?

While the Product Owner and Scrum Master provide feature
clarification and facilitation, only the development team
should provide estimates because the team is accountable for
doing the work. This is a departure from traditional methods,
where team leads or development managers generally provide
estimates. For a humorous take on this concept, check out
the Vizdos and Clark cartoon about the chicken and the pig:
www.implementingscrum.com/2006/09/11/the-classic-
story-of-the-pig-and-chicken.

19

www.implementingscrum.com/2006/09/11/the-classic-story-of-the-pig-and-chicken
www.implementingscrum.com/2006/09/11/the-classic-story-of-the-pig-and-chicken

It depends on the team’s familiarity with each other and the
sizing techniques used. At first, it may take several hours to size
only a few features. As the team becomes more experienced,
the amount of time needed will decrease. Ultimately, teams
should not spend more than a few minutes estimating each
new feature. If the team is still struggling with estimating after
a few sprints, address the issue in the sprint retrospective and
consider hiring an Agile coach.

How Long Should
it Take to Estimate?

20

Points are used for relative sizing of features, which is different
from traditional methods where hours are usually used. Points
can be used to size any type of feature or requirement artifact,
such as a use case or user story. Point values can vary, but
a common value range used is the Fibonacci sequence, which
generates subsequent numbers in the sequence by adding the
previous two numbers.

To illustrate this concept, assume we’re comparing the
following items:

Using the Fibonacci sequence numbers two, three, five, and
eight, assume we assign the car a value of two. If we want
to compare the size of the two vehicles, we might say the bus
has a value of five, which means it is more than twice the size
of the car (larger than three) but less than four times the size of
the car (smaller than eight).

Points are also useful for determining team velocity. Velocity
can be used to determine when the amount of work currently
in the project will be done. For example, if there are 40 points
in the project and the team shows an average velocity of five
points per sprint, then the team will most likely be finished
in eight sprints, assuming all else is equal.

The Point System

21

Over time, a team develops a feel for the relative sizes of things.
When a team first transitions to Agile methods, however, the
initial estimates among the team members will not converge
easily. Don’t panic! This is normal and will get better with time.

DANGER! When sizing features using points remember that
points are relative and specific to the skills of the team, which
means it’s impossible to compare the performance of two
teams based on point values. So, a team that completes 40
points worth of features is not necessarily doing more work
than a team that is doing 20 points.

While points have the additional advantage of determining
velocity, some teams prefer to use a qualitative measure, such
as T-shirt sizes. Using this sizing method, teams size user stories
based on small, medium, and large sizes.

22

While there are many ways to write requirements for an Agile
project, one method that is quickly becoming preferred
is user stories. In fact, in Agile projects, the term “requirements”
is rarely used, which is why we have used the word “feature”
up until this point. Traditional projects that define all
requirements up front often deliver features at the expense
of value (what the business really needs). They may also deliver
only a subset of features because the scope is reduced by the
end of the project.

In contrast, an Agile project expresses features in terms
of business value. One way to do this is through user stories,
which are not specific to any Agile methodology. When adding
user stories to the product backlog, the Product Owner should
be asking, “What business value does this feature add?”

User Stories

23

DANGER! User stories are not meant to be detailed written
documents. If you can’t fit the description of a user story
on one 3”x5” index card, rip it up and start again. As Mike
Cohn explains in Agile Estimating and Planning, user stories are
a “promise for a conversation.” They are a placeholder for the
conversation that needs to happen daily between the team
and the Product Owner during the sprint.

Software tools provide much more space than an index
card, but this encourages bad story writing practices. This
is one reason we recommend starting with note cards first
to establish good habits, then moving to a tool, like TestTrack,
for user story management.

Title: Currency Converter

Description: As a web site customer, I want to easily convert currency from one denomination to another, so I can view cata log item prices in my native currency.

1. Abi l ity to convert U.S. dol lars to Euros

2. Abi l ity to convert Euros to U.S. dol lars

3. Ability to convert U.S. dollars to Canadian dollars

4. Ability to convert Canadian dollars to U.S. dollars

Acceptance Criteria:

Samp l e User Story

24

When estimating user stories with points, the term used
is story points. As mentioned earlier, estimating user stories
occurs iteratively throughout the project. During release
planning, the Product Owner talks about new stories that have
been added to the product backlog as well as the objective
for the sprint or release. If any of the new stories are likely
to end up in the next couple of sprints, the team should take
the time to estimate as many stories as they can within the
release planning time frame.

Estimating with
Story Points

The team discusses each new story with the Product Owner
until they have a good enough understanding of the user story
to estimate its size. The size estimate will be relative to other
user stories in the deck. Relative sizing reduces the pressure
of having to be exact, which is one reason estimating in hours
is discouraged. Estimating user stories in hours has the stigma
of exactness or predictability.

EXAMPLE: We project our currency converter user story

on the screen in the team room, and everyone picks their

story point estimates using the Fibonacci sequence. After

everyone selects an estimate, we all reveal our story point

estimates. We get the following numbers: 3, 2, 5, 5, and 8

25

DANGER! Changing who is on the team may change how
stories are estimated and the amount of points the team can
deliver in a sprint. For example, Ray was transferred to another
group and Steve was added to Ray’s old team. It took a couple
of sprints before Ray could get in sync with the team on sizing
stories. Also, because Ray was not familiar with the code
the team worked with, the team took on fewer story points
in subsequent sprints until he was up to speed.

One method for acquiring estimates is to play Planning Poker.
The team uses a deck of special cards that have some number
sequence, such as the Fibonacci sequence, with each team
member receiving a set of cards from the deck. Team members
pick a card from their set that reflects the size estimate they
have chosen. When all players are ready to reveal their
estimates, the cards are turned over and shown to the other
players on the team. If there are outliers or a broad range
of numbers, Planning Poker is great because it forces the team
to openly discuss their differing opinions. For more information
about Planning Poker, check out Mike Cohn’s web site:
www.mountaingoatsoftware.com/topics/planning-poker.

Learn how to configure story points in TestTrack:
http://blogs.seapine.com/2010/06/conf iguring-stor y-
points-in-testtrack/.

26

http://www.mountaingoatsoftware.com/topics/planning-poker
http://blogs.seapine.com/2010/06/configuring-story-points-in-testtrack/
http://blogs.seapine.com/2010/06/configuring-story-points-in-testtrack/
http://blogs.seapine.com/2010/06/configuring-story-points-in-testtrack/

User stories with an unusually high number of dependencies
or with many unknowns should be discussed minimally during
planning. If dependencies are not well understood or there are
a lot of unknowns around what the story should accomplish,
then estimates will generally be larger to account for the
additional complexity. In some cases, the team will not be able
to estimate until more is known about the story. In these cases
it’s important for the Product Owner to keep enough stories
in the product backlog for the team to discuss.

Handling
Complex Stories

DANGER! User stories that are too big to estimate or complete
in one sprint are often called epics. Epics are generally placeholders
for stories that will be created from the epic. Product Owners can
use epics for planning purposes, but should expect to break the
epic down in to smaller stories before the team tries to estimate.
After the epic is broken down, it is usually thrown away.

27

After you have everyone’s story point estimates, you need
to build a team consensus on what the final story point should
be for the user story in question. Address any story point
estimates that are radically higher or lower than the average,
and ask the team members who gave the outlying estimates
why they think the user story is easier or harder than other
team members think it is. They may have misunderstood
something or they might be aware of a problem no one else
has thought of.

Reaching a
Consensus

EXAMPLE: For our currency converter user story, the

outlying estimates were 2 and 8. While discussing

the outliers, some team members realize there is more

complexity, while others realize there is less complexity.

We resubmit our story point estimates, and the resulting

numbers change to 3, 5, 3, 5, and 5. The team decides

on a final story point estimate of 5.

28

Fist of Five: Fist of Five is a consensus building

technique that allows team members to quickly

place a vote ranging from zero to five. After

conflicting story point estimates are discussed,

team members hold up the number of fingers

on one hand to indicate their level of agreement

with the resulting decision. A fist indicates complete

disagreement and five fingers indicate full support.

Raising three fingers indicates that, although

there are reservations, the team member is willing

to move forward with the decision.

At the beginning of the project, you should establish some
method for determining how the team will move forward
if there is not complete consensus. Collaboration requires
working together as a team, but it does not necessarily mean
there will be total agreement among the team on every
decision. Before these situations arise, decide together how
to move forward when you can’t achieve a complete consensus.

29

During the last part of release planning, which is covered
in the next chapter, the development team pulls the stories
they agree to deliver in the current sprint from the product
backlog. These stories become part of the sprint backlog for
the current sprint.

After the team identifies the stories that will go in to the
sprint backlog, they begin sprint planning. This is where
the development team breaks down the stories from the
sprint backlog into tasks, which are needed to implement
the story. Examples of tasks include “build customer class,”

“migrate customer billing data”, and “add customer name
field to database”. Each task is assigned an estimate in hours.
Like with estimating user stories, estimating task hours
is a development team activity.

DANGER! The Product Owner should remain available
for the team during planning. However, once sprint
planning starts, the team should have enough information
to identify tasks to get started on. Sitting with the team while
they decompose stories into tasks may not be the best use
of the Product Owner’s time.

Estimating
Task Hours

30

Task estimates are in ideal hours, based on an ideal day. The
team should estimate how long it would take to complete
a task assuming they had no interruptions, no meetings, and
plenty of alertness and energy.

DANGER! Task hours should not be larger than 16 hours,
or two working days, because smaller task estimates increase
the overall understanding of the problem. For example,
a testing task estimated at 80 hours for a two-week sprint
does not sufficiently break down the types of testing that
need to be done.

Ideal Days

31

Whether estimating stories or task hours, it is important for the
team to remember that there is a law of diminishing returns
to the time spent estimating. In the case of user stories, if the
team cannot decide between a point size of five and eight,
they should take the eight, which is the more conservative
number. In the case of tasks, the team should break down
stories into tasks and estimate hours until they reach a natural
stopping point. As the sprint progresses, tasks will be added
and removed. Hours will also be updated regularly, so there
is no need to sweat over getting it right the first time

Avoid Analysis
Paralysis

32

Everyone has difficulty estimating in the beginning, but there’s
no reason to fear it. Here’s what we learned:

�� Estimating on Agile projects occurs iteratively, at the
	 beginning of each sprint for features and throughout
	 the sprint for tasks.

�� Include everyone—especially the customer representative
	 or Product Owner—in the initial, high-level estimate.

�� Assign story points to indicate the level of difficulty
	 for each user story.

�� Allow for dependencies when estimating, and make sure
	 each user story is broken into its component parts.

�� Break down stories into tasks, and then estimate hours
	 for each task.

�� Build a consensus on story point estimates.

Estimating
in a Nutshell

33

34

When training new recruits, drill sergeants in the British Army
instill a healthy respect for the “Seven Ps.” Forget the Seven Ps,
British soldiers are told, and you are not likely to live long on
the battlefield. Likewise, ignoring the Seven Ps when you’re
beginning a new software release may mean the demise
of your project. So what are these Seven Ps?

Prior Planning and Preparation Prevents Pretty Poor
Performance

Do You Know
the Seven Ps?

(The British drill sergeants use a more vulgar “P” word than
“pretty,” but we’ve sanitized it for your protection.)

So far on your Agile Expedition, you’ve prepared by establishing
your product backlog and completing your initial, high-level
estimate in the form of story points. Now it’s time to plan how
you’re going to tackle the project.

35

In an Agile environment, planning happens on two levels:
release planning and sprint planning. Release planning
happens on the first day of every sprint (or iteration) and
focuses on the longer-term, strategic goals for the project.

The release plan starts with the prioritized and estimated
product backlog. It reflects the balance between business
value and delivery capability. The release plan establishes the
date for the release and the number and length of sprints in the
release. Release planning, which also involves estimating new
features, concludes with an understanding of what features
will go into the sprint backlog for the current sprint.

Sprint planning also happens the first day of a sprint, but deals
with the specifics of each sprint (or iteration, if you prefer). The
output of sprint planning is the full sprint backlog.

By the time you finish your release and sprint planning, you’ll
have a roadmap of your product’s releases. Let’s take a closer
look at these two key Agile activities.

Release Planning
vs. Sprint Planning

36

After the Product Owner assembles their backlog of user
stories, it’s time to sit down with the team for a release planning
session. During this meeting—usually up to four hours
long—your team will review the project’s strategic goals,
commit to the goal for the current release, update the goals
for future releases, provide story point estimates for stories
in the product backlog, and then create a schedule of the sprints
in the current release.

Release Planning Checklist

�� Product Owner updates team on any changes to the 	 release plan

�� Team reviews current release/sprint goals

�� Team discusses and sizes any new features in the 	 product backlog

�� Development team selects features they agree to deliver 	 in the current sprint

Release Planning

37

When planning releases, grouping user stories by theme
is helpful for a couple of reasons. First, working on user stories
with related functionality usually goes faster than working
on features that are scattered throughout the application. It’s
generally more efficient to focus on one functional area than
it is for the team to divide its attention among multiple areas.

Why is it more efficient? When you change from one functional
area to another, you switch to a new context. This switch
requires an adjustment period, which slows down your (or your
team’s) productivity. By grouping work into functional areas,
you minimize the amount of context switching, and therefore
you get more done faster.

It’s also more efficient because themes help organize the
backlog so you can quickly find items with related functionality.

Use Themes to
Help Plan Releases

EXAMPLE: Our customers are struggling to find the data they

need to complete their weekly reports in the system we’re

building for them. The solution involves a combination of user

interface changes to existing screens and a new business rule

for automatically calculating status. We create a report usability

tag for items in the backlog related to fixing this issue, which

makes it easy to then build a sprint to address the issue. The

Product Owner prioritizes the stories in the report usability

theme into the product backlog and the team pulls the stories

they agree to complete in the sprint.

38

The Product Owner should identify themes before the release
planning meeting because themes will help them focus
on what is really important and the value that will be delivered
to the customer and business. From the Product Owner’s
point of view, themes typically reflect some aspect of business
value—a benefit to the business or customer.

Possible themes could be:

�� Improve administration

�� Provide online payment options

�� Meet compliance

Themes reflect the Product Owner’s view and all stories
in a theme will not be of equal importance. All stories do not
need to be completed to deliver on the theme benefits.

Themes and
the Product Owner

39

The Product Owner should be prepared to discuss the release
goals at the release planning meeting. These goals might
be adjusted if the team has insights that would make for
a better set of goals or if they’re not confident they can deliver
on the original goals.

It’s important for the team to understand the customer and
business needs driving the release goals, and that the Product
Owner and management understand the challenges involved
in meeting the release goals. At the end of this meeting,
everyone should agree on the goals for the release.

To help with release planning, perform the following tasks:

�� Select a desired sprint length. If the team is just starting
	 the project, they will need to select a sprint length. The
	 sprint length can be as short as one week and as long as six
	 weeks. Consistency here is crucial because the team will set

	 a natural rhythm or cadence for team operation and product
	 releases for the remainder of the project. A consistent sprint
	 length also helps stakeholders outside the team with planning.
	
	 Consider the following when helping the team determine
	 the initial sprint length:

1.	 Team experience with, and attitude toward, Agile
	 projects and practices.

2.	 Team’s ability to deliver based on team factors, such
	 as skills and maturity, and organization factors, such
	 as management support and environment availability.

3.	 Any known dates that affect delivery of work, such
	 as release dates.

Set Release Goals

40

DANGER! Keep the following Agile Manifesto Principle
in mind: “Deliver working software frequently, from a couple
of weeks to a couple of months, with a preference to the
shorter timescale.” The team should always be looking for ways
to deliver software faster without sacrificing quality. Sprint
lengths on the longer side of the delivery spectrum, five to six
weeks, have room for improvement.

�� Set target release dates. After the sprint length is determined,
	 the team can set target release dates. Release dates may
	 be driven by external factors, such as competitors, trade shows,
	 or contractual requirements, or internal factors, such as the
	 start of the fiscal year or establishing a consistent, repeating
	 schedule of releasing every six months. For example, the
	 team decides on a four week sprint. So, if the team decides
	 to release every sprint, then they will be able to deliver code
	 to production every four weeks. If the team decides to
	 release every two sprints, then the team will deliver code
	 to production every eight weeks. A release plan can be built 	
	 around this schedule.

DANGER! While the team may decide to release every
two sprints, the team must produce releaseable code
at the end of every sprint. So, at the end of the first
sprint in a two sprint release cycle, the team must have
production-ready code.

41

�� Tag the release with a goal or goals. Once the release
	 target dates are determined, the Product Owner can
	 tag release goals to each release. Release goals can be
	 represented by themes or epics. These goals should not
	 be misinterpreted as commitments by the team.

DANGER! Except for the current sprint, release goals attached
to future release dates won’t have implementable features
associated with them. Remember, each team plans on a sprint
by sprint basis, so features for a future sprint won’t be known
until the sprint is planned.

Agile teams establish a consistent release schedule, which
creates a regular rhythm for the project. Everyone involved
with the project, both inside and outside the team, knows
when to expect a new release.

42

In the last chapter, we discussed estimating, story points, and
velocity. As a reminder, velocity is the average feature or story
points a team completes during a sprint. It simply helps you
determine when your project will be completed.

After velocity is calculated, the team can plan how many
sprints it will take to complete the project. The calculation is
straightforward. For example, if the team’s known velocity
is 20 points per sprint, it should take them about 12 sprints
to complete a project with 240 points in it.

For a project that is already in progress, velocity can be
determined by looking at past sprints. However, if the team

doesn’t have an established velocity, a range should be used.
The range, which is given as a best/worst case scenario for
project completion, is determined by having the team estimate
their maximum and minimum points per sprint for features that
have already been estimated.

For example, the team may estimate 20 points per sprint
as their minimum velocity and 40 points per sprint as their
maximum velocity. This information can be used to estimate the
best/worst case scenario as shown in Figure 1. As you can see,
best case is 6 sprints and worst case is 12 sprints.

Calculating
Velocity

300

250
240

200

150

100

50

 0

1 2 3 4

Spr ints
5 6 7 8 9 10 11 12 13

T ime Frame for Comp let i on

Best Case : 6 spr ints

Worst Case= 12 spr ints

Tota l Story Po ints i n Pro ject = 240

Worst Case=20

Best Case V=40S
t

o
ry

 P
o
in

t
s

Figure 1: Best/worst case scenario.

43

Your initial release plan is really more of a rough draft. You’ve got
enough of a blueprint that you can get started, but you’ll need
to continually revise and correct the release plan as you go. This
is a key part of an Agile process.

One reason for this continual planning is that it will take a few
sprints before you get an accurate idea of your team’s true
velocity. Also, sprints won’t always deliver everything you plan
for them to deliver, or they may deliver more than the plan calls
for. And then there are staffing changes, customer changes, and
other unforeseen problems that will impact your release plan.

The most important reason, however, is that business and
customer needs change over time, sometimes rapidly. It’s
important to remain flexible about future release goals to ensure
you are always delivering the highest value for the customer.

Sprinting Toward
Change

44

Zero In
Is your team new to Agile? You might want to plan for a Sprint Zero.
Sprint Zero is a sprint that happens at the beginning of the project.
It’s used for things like getting organized, developing a backlog,
setting story points, prioritizing user stories, and other technical
and logistical issues. The Sprint Zero goal may be to simply build
the backlog.

45

During sprint planning, the development team breaks down the
features they selected for the current sprint in to tasks. For each
task they write down the hours necessary to complete the task.

Notice there is no name on the task card in Figure 2. Tasks are
not assigned until they move to “work in process.” Assigning
tasks as they move from “to do” to “work in process” leaves the
tasks open to anyone and encourages team ownership for
the work in the sprint.

The development team should break down features until they
reach a natural stopping point. Trying to identify every task
is an exercise in futility. Tasks will be added, removed, and
updated as the sprint progresses. While the time needed for
sprint planning will depend on the project characteristics,
as a rule of thumb teams should expect to spend up to four
hours in sprint planning for a 30-day sprint.

Sprint Planning Figure 2: Task Card

46

DANGER! The Product Owner may not stay for the sprint
planning session. Because the team discussed the sprint backlog
features during release planning, the Product Owner usually
does not need to stay while the development team breaks down
the features in to their respective technical tasks.

With your release planning and sprint planning finished, you’ve
got a roadmap for the release. Learn more about using TestTrack
for release planning: http://blogs.seapine.com/2010/07how-
to-use-release-planning-in-testtrack/.

47

http://blogs.seapine.com/2010/07/how-to-use-release-planning-in-testtrack/
http://blogs.seapine.com/2010/07/how-to-use-release-planning-in-testtrack/

Where it makes sense, hardening sprints can be scheduled
anytime in the release cycle. You do not add any new features
in this sprint. Instead, hardening sprints are used to perform
stabilization, bug fixes, and testing. Hardening sprints allow
teams to focus on paying down the technical debt that
has accumulated over the course of the project. The result
is a more manageable and maintainable codebase.

Hardening Sprints
DANGER! Hardening sprints are especially important for
large or complex projects. Technical debt accumulates faster
as lines of code and components that need to be integrated
increase. Make sure you schedule time for hardening sprints
on larger projects.

48

Chances are, your team doesn’t know everything. Perhaps
a backlog item exists and the team doesn’t have enough
information about it to be able to deliver an estimate. In such
cases, you might need to plan for a spike.

A spike focuses on researching an issue or technology. The
goal of the spike is to answer a specific business or IT question.
Spikes can last from a few hours to a couple of days or more,
depending on the problem. For large spikes, create a user story
and estimate it at the same as other stories so the effort can
be incorporated into a sprint.

DANGER! Don’t allow spikes to go on indefinitely. There must
be a limit on the spike’s duration in order to focus the research
effort and reduce the amount of time spent on tangents.

Got a Question?
Spike it!

49

Release and sprint planning help keep your project on track.
Here’s what we learned:

�� Release planning addresses long-term, strategic business goals.

�� Sprint planning deals with the specifics of each sprint.
	 The output of sprint planning is the full sprint backlog.

�� Themes help organize the product backlog so you can
	 quickly find items with related functionality.

�� Velocity tells you how much work your team can complete 	
	 per sprint and per release.

�� A Sprint Zero can help a new team get ready for their first 		
	 Agile project.

�� Hardening sprints allow teams to focus on paying down
	 the technical debt that has accumulated over the course
	 of the project.

�� Spikes are used to research and answer a specific business
	 or IT question.

Release and Sprint
Planning in a Nutshell

50

51

Hitting the Trail
No matter how long sprints are, Agile teams feel there are
some basic activities that are important to perform every day,
such as:

�� Working through stories, tasks, and testing

�� Identifying and removing impediments

�� Monitoring issues

�� Updating progress

�� Holding daily stand-up meetings

�� Updating the plan based on progress information
	 and new data

So far, we’ve covered the planning stages—building the
product backlog, estimating effort and hours, and planning
the release and sprints. Now that the planning is complete,
what happens during the rest of the sprint? That’s what you’ll
find out on this leg of the expedition. It’s time to hit the trail and
begin the work of building the product—one sprint at a time.

52

When you begin a new sprint, all the team members should
have a list of the stories they’ve agreed to complete in that
sprint. A well-functioning Agile team is adept at trading
off tasks during the sprint.

For trade-offs to occur, however, team members must speak
up when they start to run into trouble with a task, instead
of waiting until there’s little time left and the options for solving
problems are limited. Conversely, if a team member finishes
a task early or has expertise in an area that others lack, it’s their
responsibility to help other team members, even for tasks that
are outside their usual responsibilities.

Working through
Stories and Tasks

53

As you get into the work, you might find you need to partner
with someone to get things done. For example, a developer
might need to partner with another developer, a user interface
designer, or a tester. Team members partner for as long
as necessary to accomplish their objectives.

Pair programming, which is a common technique used
by many Agile teams, involves two developers working together
to design and program. Proponents of pair programming cite
significant improvements in quality and higher productivity
as benefits.

Pair programming also helps ensure consistency in code
because there are always two people who can make sure
standards are followed. For more information about pair
programming, check out Pair Programming Illuminated
by Laurie Williams and Robert Kessler.

Two Heads Are
Better than One

54

At some point in the project—or, more likely, at several
points—your team will run into roadblocks that will impede
progress.

An impediment is anything that prevents a team member
from performing work as efficiently as possible. It can range
from a large issue (“I need data from another team to test this
report”) to a small hassle (“I need a new mouse”).

One of the Scrum Master’s responsibilities is to help remove
impediments for the team. The Scrum Master can only
be effective, however, if the team reports issues as soon as they
are discovered. At the daily stand-up meeting (or daily Scrum),
the Scrum Master records new impediments and reports
on previous impediments that have been resolved.

Enter the Scrum Master
We’ve mentioned the Scrum Master in previous stops on the Agile Expedition, but we haven’t really explained what the Scrum Master does. The Scrum Master is responsible for ensuring Agile values and practices are followed, removing impediments, and ensuring the team stays productive. The Scrum Master fosters close cooperation among everyone involved with the project, and shields the team from external interferences.

Removing
Roadblocks

55

DANGER! The Scrum Master does not work in a vacuum.
Everyone on the team has some level of responsibility for
helping to remove impediments. The team, including the
Scrum Master and the Product Owner, should determine who
is the best person for each situation.

56

A key Agile practice is making sure the status of the team’s
progress is always visible to the team, management, and
other stakeholders. Visibility builds management’s trust
and confidence in the team, which is necessary for the team
to become self-organizing and self-empowered—two
attributes shared by the most successful Agile teams.

To foster trust and openness, everyone working on the project
must be comfortable discussing the true status of their
tasks. This can be difficult for teams transitioning from more
traditional development environments, where finger pointing
and the blame game are unfortunately more common than
we might like to admit.

The Scrum Master, who acts as a servant leader, is critical
to a successful adoption of a more open environment.
This can only happen if the Scrum Master “walks the talk”
and models open behavior. The Scrum Master must facilitate
problem solving by the team and avoid criticizing individual
team members.

Open Up

57

EXAMPLE: Barb took on the task of creating a new report, estimating her time at two hours. She assumed Joe had already created the tables for the report, but he had not. So Barb adds “create tables” as a task and adds it to the sprint backlog.

Handling Production
Issues
Before going home at the end of the day, everyone on the
team updates their tasks with the amount of work (expressed
in hours) remaining. Task hours remaining in the sprint will
fluctuate as tasks are added and removed, and hours for
existing tasks are updated.

58

Update Your
Progress
With Agile, code goes into production much sooner than
it does with traditional development methodologies.
Production code needs to be maintained even before the
project is complete. How do you handle production defects?
It depends on which team is responsible for maintenance
support and the severity of the defects. If a separate team
is responsible for maintenance support, the project team can
focus strictly on project work.

However, if the project team is also responsible for maintenance
support, make sure you allow time for emergency production
issues when the sprint is planned. This ensures the team will
have time to handle issues that require immediate assistance
as they occur. For production issues that are not emergencies,
the Product Owner will prioritize the defects back into the
product backlog just like any other feature.

59

Establishing a triage process for production issues allows the
team stay on top of bugs without disrupting progress. New
and existing issues should be addressed in future sprints where
proper planning and prioritization by the Product Owner can
make sure the team is working on the most valuable features
and tasks.

60

Bugs aren’t the only things discovered in production. Customers
often suggest new features or have suggestions for improving
existing features. These types of issues are often reported
via the same mechanism as defects. (For example, users often
describe a feature request as a bug when the software doesn’t
work exactly how they would like.) For this reason, it’s important
for the Product Owner to have access to production issues.

DANGER! The Product Owner should always be planning
ahead to ensure a continuous flow from sprint to sprint.
The Product Owner should start looking forward to the
next sprint before the end of the current sprint—planning
new features, refining user stories, and updating backlog
priorities, for example.

New Feature
Requests

61

The daily stand-up meeting, or daily Scrum, is a core part of
Agile because it encourages communication and helps the team
stay up to date on the sprint’s progress.

The daily stand-up meeting earned its name because that’s
what it is—a short meeting where everyone remains standing
to keep the meeting short and to the point. Daily stand-ups,
which should be 15 minutes or less, are held five days a week
at a time that works for all team members. The Product Owner,
Scrum Master, and core development team all attend.

Stakeholders, managers, customers, and other interested parties
are welcome to attend and listen, but this is not a status meeting
for management. Only the team members, Scrum Master, and
Product Owners speak during this meeting.

All team members share their brief answer to three questions:

1.	 What did you do yesterday?

2.	 What are you planning on doing today?

3.	 Is anything getting in your way?

Daily Stand-up
Meeting

62

DANGER! A common misperception is that the daily
stand-up is for the Scrum Master. The daily stand-up is for the
team and they should talk to each other instead of reporting
to the Scrum Master. The primary role of the Scrum Master
in the daily stand-up is to listen, provide guidance, and find
ways to facilitate the team’s progress.

63

Keep It Short
and Sweet
The daily stand-up is not the time for detailed design discussions.
The need for a longer discussion might be identified during the
meeting, but the actual discussion should take place outside
of the meeting. That way, it can involve only the necessary
participants and not tie up the entire team. The team members
who need additional time to problem solve can schedule
another time to get together.

DANGER! The team’s daily stand-up might be in trouble if:

1.	 It lasts longer than 15 minutes
2.	 Participants sit down
3.	 Lengthy discussions ensue
4.	 You leave still not knowing if the sprint is on track

64

As the team is reporting progress, it should be made
easily visible and accessible to other project stakeholders.
Transparency is highly regarded by Agile teams and, as such,
communicating progress effectively is key. Burn down charts
and task boards are two ways to communicate progress.

One of the responsibilities of the Scrum Master is to make
sure that key progress indicators, are up to date and visible.

The sprint Burn Down chart communicates progress
to stakeholders by showing the work remaining in the sprint.
The daily stand-up, and not the burn down, is the best gauge
of progress for teams.

The Task Board shows who is handling a task and what state
(Not Started, In Progress, or Done) the task is in.

These activities are good for keeping sprints on track, so let’s
take a closer look at each one.

Making Progress
Visible

65

A sprint burn down chart is a graphical representation of work
remaining in the sprint. The amount of work remaining in the
sprint backlog is often shown on the vertical axis, with time
along the horizontal axis. Burn down charts are useful for
keeping track of the team’s progress.

Ideally, the chart burns down to zero by the end of the sprint.
If team members are reporting their remaining task hours
honestly, the line should fluctuate up and down as it moves
toward zero.

Sprint Burn Down Chart

66

Task Board
The task board shows stakeholders who’s working on what and
keeps them updated on the status of all items. It is one of the
most important information sources, or information radiators,
that an Agile team has—perhaps the most important. The
task board illustrates the progress an Agile team is making
in achieving their sprint goals.

Many Agile experts recommend creating a physical task board
located in an area where everyone on the team can see it often.
Alternatively, you can use a software tool to automatically
generate and update your task board. If you have access
to a projector, you can display the task board on the wall.
Besides saving space, this approach will also allow you
to preserve the data in case you need to refer back to it after
the sprint is complete.

67

Murphy’s Law affects sprints just like it affects everything else
in life. So when whatever can go wrong does go wrong, make
sure you take the following steps:

Involve the Product Owner as soon as possible. The earlier
you raise the red flag, the more time you’ll have to get the
problem resolved. No one likes surprises.

Involve the team. If there’s a problem, the team should work
together to figure out a solution. Maybe a developer helps out
with testing because it doesn’t do any good for him to continue
programming if there’s no bandwidth to test his new code.

Communicate. Make the sprint status available to everyone,
especially stakeholders and management. Broadcasting issues
usually helps to resolve them more quickly.

Agree to drop an item. While the team should complete
everything they agreed to deliver in the sprint, if it becomes
clear that an item won’t be completed, work with the Product
Owner to remove the least valuable item from the sprint.

Terminate the sprint. In rare instances, the sprint can
be terminated by management or even the team.
Sprint terminations should only occur if the sprint goal
is unattainable or has changed so significantly that the
resulting output of the sprint will yield little or no business
value.

When Things
Aren’t Going Well

68

Here’s a handy checklist of tasks, divided by role.

Product Owner
�� Participates in sprint planning, the daily stand-up meeting,

	 the sprint review, and the sprint retrospective

�� Works ahead to add features to the product backlog,
	 and organize and prioritize the backlog

�� Provides the team with product development direction
	 and is available for discussions and questions

�� Accepts or rejects features completed in the sprint

Scrum Master
�� Participates in sprint planning, the daily stand-up meeting,

	 the sprint review, and the sprint retrospective

�� Monitors and facilitates team progress

�� Acts as a servant leader and not a traditional manager

�� Looks for impediments and deals with them

�� Helps with team’s understanding and adoption
	 of Agile practices

Development Team Member
�� Participates in sprint planning, the daily stand-up meeting,

	 the sprint review, and the sprint retrospective

�� Works on tasks associated with features in sprint

�� Monitors issue queues

�� Responsible for delivering the features they committed
	 to in the sprint.

Checklist: Tasks by Role

69

There are some basic Agile activities that are important to do
every day. Here’s what we learned:

�� It’s critical to honestly and openly communicate your status.

�� Pair programming can improve quality and productivity.

�� Among other things, the Scrum Master is responsible
	 for moving impediments.

�� The daily stand-up meeting allows the team to keep
	 up to date on how the sprint is going and encourages 		
	 communication.

�� The burn down chart and task board are key progress 		
	 indicators managed by the Scrum Master.

�� Communicate problems and impediments as early as possible 	
	 so the team has plenty of time to resolve them.

Daily Activities
in a Nutshell

70

71

Iterate with
Confidence

Automated testing goes hand-in-hand with TDD. While TDD
tests the code, automated testing typically makes sure the
application functions properly as accessed through the user
interface. In addition, you can also automate the testing
of backend services, such as databases, to ensure
an application is functioning correctly behind the scenes.
For example, when a user account is added on a new user
screen, automated tests can test and verify both that the
screen functioned properly and that the database tables
were updated with the information entered.

During the last stop on this Agile Expedition, you got down
to business with daily tasks and started developing the first
iteration of your product. You’re now probably ready to get
into your next sprint. But what happens if you break what you
built in the last sprint?

That’s where automated testing comes in. Automated testing
allows you to efficiently work incrementally with the confidence
that each new sprint hasn’t broken previous sprints.

Agile practitioners often include Test-Driven Development
(TDD) as part of their toolkit. TDD, which focuses on writing
tests for code before writing the code, can be an incredibly
useful way to raise the quality of software.

72

Automated testing usually focuses on customer acceptance
testing. One of the goals of acceptance testing is to ensure
the sum of the code parts are actually (at least) equal to the
individual pieces. Unlike unit tests developed under a TDD
model, which are tightly tied to the code itself, automated
tests are one step removed and can be challenging to create,
maintain, and extend in an Agile environment.

As your team transitions to Agile, it can seem like the
functionality to test is constantly under development, and
creating test scripts can feel like driving a car by looking only
in the rear view mirror. The trick is creating the right kind
of automated tests, in the right areas, to ensure that every
sprint doesn’t consist of one step forward and two steps back.

73

In the short term, automated testing can be challenging
to implement in an Agile environment.

Some common challenges include:

�� Manual testers don’t have the skills to write scripts for test
	 automation

�� Software development environments are not equipped
	 to handle automation

�� Resistance from within the organization
	
�� Financial costs associated with investment in tools, training,

	 coaching, and hiring knowledgeable staff

Is Automation Worth
the Effort?

AutomatedManua l

74

For example, it takes 10 minutes on average to run a test,
each tester costs $40 per hour, and you have 500 tests to run.
Your manual testing cost is $3,333 per test cycle. In addition,
it takes 83.3 hours to run all tests using one tester. That’s over
two man-weeks! An automated test tool can most likely run
that same set of tests overnight across multiple computers, not
only saving you money, but also saving you significant time.
Plus, you can fully test after every nightly build, not just at the
end of a sprint.

So, with these challenges, why not just manually test each
sprint? The answer lies in the long-term return on investment,
or ROI.

The simple fact is automated test scripts run faster, don’t get
tired or bored, and don’t suddenly miss test steps like people
do. With a relatively small investment in tools and test scripts,
your testers can focus on testing the new and complex parts
of the application, while the automation tool keeps retesting
the old stuff. Think of the ROI as ‘time to run a test’ times ‘cost
of a tester’ times ‘number of tests to run.’

75

Several years ago, Gerard Meszaros, Shaun Smith, and Jennitta
Andrea created the Test Automation Manifesto. (Download
it here: http://xunitpatterns.com/~gerard/xpau2003-test-
automation-manifesto-paper.pdf.) It’s useful as a starting
point when looking at automating tests in an Agile world.

The Test Automation Manifesto states that tests should have
the following traits:

The Test Automation
Manifesto

�� Concise: Tests should be as simple as possible and no simpler.

�� Self-checking: Tests report their own results.

�� Repeatable: Tests can be run many times in a row without 	
	 human intervention.

�� Robust: Tests produce same result now and forever. They 		
	 are not affected by changes in the external environment.

�� Sufficient: Tests verify all the requirements of the software 	
	 being tested.

�� Necessary: Everything in each test contributes to the
	 specification of desired behavior.

�� Clear: Every statement is easy to understand.

�� Efficient: Tests run in a reasonable amount of time.

�� Specific: Each test failure points to a specific piece
	 of broken functionality.

�� Independent: Each test can be run by itself or in a suite
	 with an arbitrary set of other tests in any order.

�� Maintainable: Tests should be easy to understand, 		
	 modify, and extend.

�� Traceable: Tests should be traceable to and from the code
	 they test, and to and from the requirements.	

http://xunitpatterns.com/~gerard/xpau2003-test-automation-manifesto-paper.pdf
http://xunitpatterns.com/~gerard/xpau2003-test-automation-manifesto-paper.pdf

Several of these tenets can be quite challenging in the
ever-changing Agile world. When examining what to automate
(and what to apply these principles to), you might want
to start with what not to automate. Edge cases and tests
to explore functionality generally aren’t good candidates.
Focusing on core functionality maximizes your automated
testing ROI.

When deciding what to automate, there are two parts of any
development process to look at: continuous integration and
regression testing.

Continuous integration means bringing your team’s code
together as often as possible, at least once per day, to ensure
the software as a whole keeps working as changes are made.
In its simplest form, continuous integration is used to make
sure that all your code still compiles and links. When combined
with automated testing, though, the value of continuous
integration can dramatically increase.

Regression testing uncovers software errors by partially
retesting a modified program to ensure that errors were not
introduced in the process of fixing other problems. This area
of testing often receives the least attention.

77

Most experienced Agile practitioners use continuous
integration as part of their team plan. TDD can help here,
and your compiler and linker will catch the basic “broken
build” problems. However, including a good subset of your
automated tests will help you find issues that have been
unintentionally affected by the current sprint’s updates.

When deciding which automated tests to include, your focus
should be on broad automated tests, such as smoke tests,
to ensure the base functionality of the application is intact.
You want to look for tests that touch all the key application
areas, so the testing you’ll be doing in the sprint isn’t delayed.

EXAMPLE: The application we’re building requires users

to log in before they can perform key actions. We include

automated tests to make sure an administrative user can log

in and view each main screen. However, we won’t be adding

the security functionality until a later sprint, so we don’t

include detailed security tests in the current sprint.

Continuous
Integration

To learn more about automated smoke tests, check out this
Automated Smoke Testing blog post:
http://blogs.seapine.com/2009/06/automated-smoke-
testing/.

78

http://blogs.seapine.com/2009/06/automated-smoke-testing/
http://blogs.seapine.com/2009/06/automated-smoke-testing/

Regression testing is where traditional automated testing often
comes into play. The challenge is how to integrate regression
testing in a continually evolving environment.

Depending on the project, hardening sprints may need to be
used as a way to compensate for a slow destabilizing of your
application. In each sprint, you drift a bit further from your
quality ideal as different parts of your system start diverging
from each other.

Use hardening sprints to get everything back in line through
refactoring. Fixing issues as they occur—rather than paying this
technical debt toward the end of a release—is not only more
efficient, but also builds in better quality.

The key is to focus your automated testing on stable or mature
functionality. In those areas, going deep with your functional
tests helps exercise the most code and minimize those late
bugs in unchanged parts of the application.

Regression
Testing

79

All good Agile practitioners understand the need for constant
review and feedback, and it’s no different with automated
testing. At the end of each sprint, you should review three
areas.

First, what new functionality should be automated and added
to either your continuous integration or regression testing
suite? If the new functionality is going to be extended in the
next few sprints, add a set of shallow tests (probably in the
continuous integration area). When you’re ready, you can
extend those scripts into a deeper set that can be used in your
regression suite.

Review at the End
of Each Sprint

Second, which scripts should be rewritten or removed from
your automation suite? You might want to rewrite or remove
scripts that either test areas of functionality that are about
to undergo large changes or consistently fail because
of changes from the current sprint.

Finally, review areas that were not automated, but had
significant defects associated with them. For example, you had
no smoke or regression tests around failed passwords, but ad
hoc testing discovered that area of the code was sensitive to
change. Adding new automated tests to ensure that future
changes don’t break this sensitive area might be in order.

80

This is one area where an Agile approach can pay real dividends
for automation. Because the whole team is involved with sprint
planning, team members who focus on automation have
a chance to think about what needs to be automated.

In addition, while you’re defining acceptance criteria, you
should also be thinking about what you can (and cannot) verify
in an automation test.

Engaging the Product Owners, developers, and other
stakeholders on what can and will be automated also helps
them understand how to define good acceptance plans.
An acceptance plan of “screen should look clean and
well-balanced” is difficult to verify, and even harder to automate.

Plan for Automated
Testing

DANGER! If all your tests need to be rewritten after every
sprint, you may need to examine your test automation
approach. Are you automating the wrong areas of the
application? Are your scripts using “fragile” methods, such
as screen location, to find controls?

81

Automated testing helps Agile developers iterate with
confidence. Here’s what we learned:

�� TDD is a great way to improve software quality.

�� Automation brings efficiency to testing and has a high 		
	 long-term return on investment.

�� Automated testing usually focuses on customer acceptance 	
	 testing, but can also verify data behind the scenes.

�� The Test Automation Manifesto is a good starting point
	 for automated testing in an Agile world.

�� Continuous integration ensures software keeps working
	 as changes are made to the code.

�� Regression testing helps you fix issues as they occur.

�� Automated testing also requires constant review
	 and feedback.

Automated Testing
in a Nutshell

82

83

What’s Done
Is Done

project, done is determined a year in advance. This is one
of the many problems with predictive planning methods.

With Agile, releasable features are developed in short sprints,
so the team’s definition of done is constantly reevaluated
through the “inspect and adapt” process. There’s less chance
of disagreement at the end of a sprint because the definition
of done is revisited at least every six weeks.

We just explored automated testing’s role in Agile
development. Now, we’ll be discussing a favorite word
among developers: done.

So why devote an entire chapter to defining what done means?
Isn’t it obvious when something is done? Not if everyone’s
definition of done is different. That’s why it’s important for the
team and other stakeholders to know where the goal line is.

Most traditional Waterfall projects end with an uncomfortable
period of customer sign off, due to Waterfall’s predictive
planning approach. For example, on a year-long Waterfall

84

Who Says
We’re Done?

may define the more technical aspects of the development
process that are or are not achievable during the sprint.
External stakeholders who have influence may provide inputs
and receive outputs from the sprint, but these are generally
constraints on the team that prevent them from working
toward a better definition of done.

The definition of done is determined by the team during
release planning—and that includes everyone who can
be held accountable for delivery of the product at the end
of the sprint.

Unless the team defines and agrees to specific doneness
criteria, there will be conflicting opinions about what it means
to be done. This is only natural, because members have
unique perspectives related to their primary roles on the team.

For example, a Product Owner defines the acceptance criteria
necessary for user story completion. Technical team members

DONE

Don
e?

85

Ideally, your team’s definition of done will be consistent
throughout the project.

In organizations with a lot of waste, however, the definition
may change over several sprints as the team becomes more
efficient at producing software, and as the Scrum Master
removes impediments.

With Agile, executable and production-ready code should
be the minimum produced by the end of each sprint.

“Done” Defined, 		
 Sort Of

DANGER! There is no universally accepted definition
of done for an Agile project. The uniqueness of projects,
coupled with an organization’s culture, makes it nearly
impossible to have a one-size-fits-all definition. This is why
it is important for the team to establish doneness criteria.

86

What’s the
Definition?

1.	 What are the Product Owner’s expectations?
2.	 What do other internal stakeholders require for getting to done?
3.	 What do external stakeholders require for getting to done?

You’ve convinced your team it’s important to get together
to define done. Now the question is, what is that definition?

If your team is new to Agile, working with each other, the
product, or the organization’s software development process,
defining done will take some time. Schedule at least a couple
of hours for the meeting.

You’ll want to keep everyone involved, so try to make the
meeting fun and interactive. Book a conference room and
consider using sticky notes and a white board to map out the
definition of done, like in the following example:

When deciding what done means for a sprint, your team
should understand the following:

87

Figure 3: Release every sprint

Figure 4: Sprint separate from release

88

DANGER! Defining done is not the same as user story
decomposition, which is part of sprint planning. User
story decomposition involves breaking down each story
into its respective development tasks for each sprint. The
definition of done may or may not change from sprint
to sprint.

Adjusting
Sprint Length
If sprint length was determined prior to defining done, your
team may need to adjust the length to get to their definition
of done. If your team needs to extend the sprint length from
two to four weeks to get to their definition of done, that’s OK.
If your team cannot get to done for the sprint or the release,
you need to identify the blocks that are preventing them from
getting to done.

89

After your team defines done, you need to make sure all
stakeholders are aware of the definition. Put your definition
of done on an information radiator, like a Scrum board
or task board, and make sure it’s visible by placing it in the hall,
a team room, or somewhere else where it will be seen often
by all stakeholders.

If the team is supporting their process with electronic tools,
make sure everyone has access and knows how to view reports
and get the latest status.

Remember, Agile relies heavily on trusting each other.
Transparency about what done means is absolutely critical
to building trust within your team and the organization.

DANGER! One benefit of Agile software development is that
it identifies waste in an organization. The average sprint length
is four weeks, with the range being plus or minus two weeks.
This means sprints should be no longer than six weeks and
should produce releasable code within that timeframe. If it takes
more than six weeks to produce releasable code and get to done,
you should inspect the development process for waste.

Communicating 	
 Done

90

Eliminating Waste
�� Innovation Games®—helps companies improve

	 business performance through collaborative and 		
	 cooperative play. Learn how to eliminate waste
	 by identifying how the product will actually be used.
	 For more information, visit www.innovationgames.com.

After identifying a possible waste item, introduce a method,
such as the “Five Whys,” to understand the root cause. This
method involves repeating the question “why?” up to five
times to clarify the nature of the problem and reveal the
solution. (You may have encountered the Five Whys if you
have experience with Kaizen, lean manufacturing, or Six Sigma
manufacturing methodologies.)

Waste, which is defined as any activity that does not add value
to the final product, should be eliminated. (This is different
from removing slack. There should always be some slack
in a system to make it perform optimally.)

A couple of methods for identifying and reducing waste include:

�� Value Stream Mapping—a lean manufacturing technique
	 used to analyze the flow of materials and information
	 required to bring a product or service to a consumer.
	 The goal of the technique is to make the company
	 “lean,” meaning free of wasted effort. For more information,
	 visit http://en.wikipedia.org/wiki/Value_stream_mapping.

91

www.innovationgames.com
http://en.wikipedia.org/wiki/Value_stream_mapping

of each sprint. The team could extend the sprint to five or six
weeks, but that won’t solve the underlying problem.

Suppose your white board looks like the board in Figure 5. In
this example, “QA Tested” is impeded and prevents the team
from getting to done in the four-week sprint. Remember,
the team should produce production ready code at the end

Figure 5: Production code cannot be produced in the sprint due to QA testing impediment

92

Ah ha! Now you know there is an organizational impediment
to QA testing the code within the sprint. The Scrum Master,
who is responsible for removing impediments, needs to work
with the appropriate managers to better understand this
policy and, hopefully, have it modified or removed.

1.	 Why can’t QA test within one sprint? We have to request
	 the QA environment, which requires three weeks lead time.

2.	 Why do we have to request the environment? Because 	
	 the QA environment is shared among all applications.

3.	 Why is the QA environment shared? Because there
	 aren’t enough QA team members to configure and 		
	 prepare the environment.

4.	 Why can’t the dev team prepare the environment?
	 Because policy states that only QA team members can
	 deploy code to the QA environment.

Using the Five Whys, the Scrum Master asks why
as many as five times, to help understand what is causing
the QA impediment:

93

Defining done helps Agile team members and other
stakeholders understand where the finish line is for sprints and
releases. Here’s what we learned:

�� The team’s definition of done is constantly reevaluated 	
	 during Agile projects.

�� There is less chance for disagreement at the end
	 of a sprint because the definition of done is revisited
	 at least every six weeks.

�� The team determines the definition of done during
	 release planning.

�� If sprint length was determined prior to defining done,
	 the team may need to adjust it.

�� Once done is defined, it should be communicated
	 to all stakeholders.

�� Eliminating waste can help you achieve a better definition
	 of done.

�� The Five Whys can help you understand the root cause
	 of an impediment.

Doneness
in a Nutshell

94

95

What Comes
After Done?

At a minimum, stakeholders include the Scrum Master, Product
Owner, and development team because they are responsible
for the delivery of the sprint objectives and the project
in general. Other stakeholders who may attend the sprint
review include technical teams that provided support to the
team during the sprint, such as infrastructure and architecture.
The project sponsor, senior managers, and executives are also
invited to attend, in addition to any external organizations that
will be affected by the changes resulting from the project.

We trekked to Doneness Criteria on the last leg of our journey,
but we certainly aren’t “done” with this Agile Expedition.
During this stop, we’ll examine the sprint review.

The sprint review provides another point of inspection to make
sure the team is delivering the right product. It also promotes
communication among stakeholders. It’s important to note
that, for the Agile Expedition, we’re defining stakeholder based
on the Project Management Institute (PMI) definition, which
is any person or organization that is positively or negatively
affected by the outcome of a project.

Review

96

DANGER! Do not decide who should attend on the day
of the sprint review. The Scrum Master and Product Owner
plan who to invite to sprint reviews before the project
starts, updating the list as the team iterates. Depending
on the visibility of the project, some stakeholders may
only interact with the project team during the sprint
review. Even if no one attends the sprint review except
the team, continue scheduling it for every sprint so it will
always be an option for stakeholders.

Find Your
Marching Cadence
One reason it’s important to have a consistent sprint length
is to help the team develop a natural rhythm or cadence.
If the team is sprinting every four weeks, then stakeholders
will come to expect that another sprint review will occur four
weeks after the previous one.

As with the daily Scrum or stand-up, the sprint review
should occur at the same time and in the same place
each time. This provides consistency for the stakeholders,
especially for senior managers and executives who may
spend their days going from meeting to meeting.

97

Prior to the sprint review, decide who will “drive” the meeting.
The opportunity to demonstrate the product shouldn’t fall
on the same team member for every sprint. Sharing this
responsibility gives everyone on the team a sense of ownership
of the team’s effort. It also allows team members to show off
the team’s work and receive recognition for it. Remember, the
entire team contributed to the project, so don’t let the Scrum
Master or Product Owner get all the credit by doing every demo.

Who Wants
to Drive?

Another benefit to having a different team member drive each
sprint review is that it helps reinforce the “servant leader”
role of the Scrum Master. It can be difficult for teams used
to working together under traditional roles to transition
to the Agile leadership style. Sharing the demo responsibilities
can help the team make the change from a top-down project
hierarchy, where only the project manager or senior team
members get face time with senior management.

98

DANGER! Remember that a Scrum Master acts
as a “servant leader” and should not assign the sprint
review responsibility to anyone. Let the team decide
who will drive the sprint review. Make the decision fun
by having the team draw straws or pull a name out of a hat.

User stories accepted into a sprint are commitments the
development team made to the Product Owner to complete
the stories by the time the sprint finishes. Teams new to Agile
may struggle with meeting these commitments for reasons
varying from developers overestimating the work they could
complete, the Product Owner not providing information
in a timely manner, organization impediments getting in the
way, and so on. It’s important for the team to work out the
message they will send to the stakeholders in the sprint review
about any unfinished stories.

Get on the
Same Page

99

The team, including the Product Owner, should also be on
the same page prior to the sprint review. There shouldn’t be
any surprises as far as the team is concerned, which means the
Product Owner should have already accepted or rejected
the user stories based on the acceptance criteria outlined
for the stories. If there are incomplete user stories, the Product
Owner will already be aware of this going into the sprint review.

DANGER! If some user stories were not completed in the
sprint, the team should be upfront about what they know
went wrong. Remember that Agile relies heavily on trust
and the team must be transparent to gain that trust. If the
team doesn’t know what went wrong, let sprint review
attendees know the team will discuss the sprint outcome
in the retrospective. Make sure the retrospective results,
including associated actions for future improvement, are
shared with all the stakeholders.

100

The Sprint
Review Steps
Everyone is on the same page, you’ve decided who will drive
the meeting, and you’ve got all the stakeholders together.
The sprint review is ready to begin.

Three things occur during the sprint review:

1.	 The Product Owner gives a brief overview of the objectives
	 of the sprint or release.
2.	 A team member gives a brief overview of a selected story and
	 demos the story in the software.
3.	 The team answers any questions about the implementation
	 of the story and takes note of anything that will be valuable
	 for the retrospective.

Steps two and three are repeated for each story in the sprint.

Be sure to block out adequate time to conduct the sprint review.
As a general rule of thumb, plan for a meeting duration of four
hours for a 30-day sprint. In practice, sprint review meeting
length should be adjusted for the needs of the project, but
it’s best to keep the meeting length consistent for each sprint.

101

Teams that use a physical task board to track stories usually
rip up and throw away the cards for completed stories at the
end of the sprint. However, this doesn’t allow for any kind
of archiving. Suppose you want to look back at how you
handled a similar story in a previous project, or your organization
was going through an IT audit. What would you do?

You could file the story cards for future reference, or take
pictures of the board at the end of the sprint. An easier solution
is to use a software tool to track the status of user stories and
automatically generate your task board, burn down charts,

and other reports. Using this kind of software tool ensures
a story’s history is stored in a database for future reference.
If information about a user story is needed in the future, it can
be recalled with just a few clicks.

This kind of electronic recordkeeping is especially beneficial
for teams in heavily regulated industries. With a configurable
and flexible software tool helping you track information, you
will have the documentation you need to survive audits and
provide accountability without having the tool get in the way
of your Agile practice.

Completed Stories

102

What Happens with
Incomplete Stories?
Stories still in the sprint backlog at the end of the sprint are
carried into release planning for the next sprint. After discussing
the stories with the team, the Product Owner may decide not
to carry a story into the next sprint, which is perfectly acceptable.

However, your team should understand these three things
when deciding whether to continue developing an unfinished
story:

1.	 The business value the story adds.
2.	 The technical ramifications of deciding to stop
3.	 The additional support needed to continue

DANGER! If your team uses story points to estimate user
stories, the team does NOT get points for incomplete stories.
Regardless of fault, the team gets points only for delivering
completed stories. As opposed to traditional methods that
value assigning work to the team, in Agile the team has
the power to choose the work they will take on in a sprint.
As a result, the team builds trust by delivering what they
commit to.

103

Should you re-estimate an unfinished story when planning
the next sprint? While there are different schools of thought,
re-estimating stories that were started (but not completed)
in a previous sprint may waste the team’s time and cause
confusion for stakeholders. If the story was not started in the
previous sprint, it can easily be integrated back into the product
backlog and re-sized against other stories in the backlog.

Should You
Re-Estimate?

104

The sprint review provides another point of inspection
to make sure the team is delivering the right product.
Here’s what we learned:

�� A stakeholder is any person or organization that
	 is positively or negatively affected by the outcome
	 of a project.

�� Sprint length should remain consistent so your team can
	 develop its cadence.

�� Sprint reviews should occur at the same time and in the
	 same location to prevent confusion.

�� A different team member should drive each sprint review.

�� Prior to the sprint review, the team should know what will
	 be covered during the meeting so there are no surprises.

�� The team should agree about the message they are going
	 to send to the stakeholders about any unfinished user stories.

�� The length of the sprint review should be adjusted to suit
	 the project.

�� Software tools can automatically archive completed user
	 stories and other data about the sprint for future reference.

�� Incomplete stories can be taken into the release planning
	 for the next sprint.

Sprint Review
in a Nutshell

105

106

The End
of the Trail

The sprint retrospective is usually held after the sprint review,
allowing the team to reflect on the entire sprint, including
the review. However, sometimes scheduling conflicts make
it necessary to have the retrospective before the sprint review.

DANGER! Regardless of which way your team decides
to order the retrospective and sprint review, they should occur
on the same day to keep the team’s cadence. Completing both
on the same day allows the team to mentally close the sprint
and focus on what’s coming next.

In the words of a popular GPS navigation system, “You have
reached your destination.” You’re at the end of the trail,
standing on the big X on the map. The sprint is complete,
the product has been demonstrated in the sprint review, and
everyone can relax, right?

Not exactly.

Even though the sprint review takes place on the last day
of each sprint, the sprint is not closed until the team has held
their sprint retrospective. (While we could call it the “lessons
learned” or “postmortem,” the term most often associated with
Agile in general, and Scrum in particular, is “retrospective.”)

107

Why a Sprint
Retrospective?

	 until the end of a project often results in large gaps
	 between what the team remembers and what actually
	 happened.

3.	 Energy levels are low. Everyone knows the disadvantages
	 already described, and this drains team members of their
	 enthusiasm for a retrospective conducted at the end
	 of the project.

By contrast, retrospectives conducted at the end of every
sprint give the team an opportunity to reconnect and improve
the way the project is delivered.

Traditionally, most projects have included some sort
of retrospective at the end of a project. While well intentioned,
reviewing lessons learned at the end of a project can have
several disadvantages:

1.	 It’s too late to change anything. The project has been
	 completed, for better or worse. All you can do is capture 	
	 the lessons learned, write the wrap-up report, and file
	 it away. If you’re lucky, future project teams might benefit
	 from your findings, but it’s too late to help your project.

2.	 There are large memory gaps. Team members have
	 a hard time remembering what they did last week, let
	 alone what they did over the past year or more. Waiting

108

For Agile teams, the retrospective is the last in a long line
of inspections that occur during a sprint. Unlike the other
inspections, the retrospective provides the best opportunity
for the team to identify ways to adapt and improve their Agile
processes going forward. Following are the main advantages
of the retrospective:

1.	 There’s still time to make a difference. What you 		
	 discover in the sprint retrospective will be used in future 		
	 sprints, making a positive impact on the project team, the 		
	 customer, and product quality.

The Last Inspection
2.	 You have almost total recall. Team members only need
	 to remember things that happened over a period of weeks 		
	 instead of months or years, which means the gap between
	 what they remember and what actually happened will be small.

3.	 Energy levels are high. Teams are engaged and
	 energized because they know the actions coming out
	 of the retrospective will be implemented. In other
	 words, they know the time is well spent and not wasted
	 on a fruitless exercise.

109

Who’s Involved?
At a minimum, the retrospective should include the core
team (the Product Owner, development team, and Scrum
Master) and the supporting teams—people who were
involved in fulfilling sprint objectives, but not assigned
to the entire project.

Optional participants include other stakeholders, such
as managers.

DANGER! Many teams new to Agile only include the delivery
team in the retrospective. Project stakeholders should be
given the option to attend because they are often consumers
of the information that comes out of the sprint, such as metrics
and reports. For example, if there is a problem with the way the
burn down chart is structured, stakeholders will want to use
the retrospective to discuss the issue and identify the actions
necessary to change the chart.

110

How Long Should the
Retrospective Last?
As a rule of thumb, a retrospective for a 30-day sprint should
last about four hours. However, the retrospective should
be tailored to the needs of the project and the experience
of the team. For teams new to Agile, the sprint retrospective
will initially take longer but will gradually take less time
as they get used to the activity. Alternatively, as they start
to realize the benefits of the retrospective, the time may
actually increase because the team will be more engaged
in subsequent retrospectives.

DANGER! The more participants there are in the sprint
retrospective, the more time the team will need to gather
and process the information generated during the meeting.
This can cause problems if there are time constraints—an
inefficient retrospective that does not produce actionable
results will yield little value. You don’t want your team
to feel like the sprint retrospective was a waste of time. If time
is an issue, consider splitting up-in to groups and then coming
back together to share ideas.

111

Facilitating the
Retrospective
If your team is new to Agile, have the Scrum Master facilitate
the retrospective because they typically have the most
retrospective experience. As the team becomes familiar with
the methods used to conduct a sprint retrospective, other
team members should have the opportunity to facilitate the
retrospective. This encourages buy-in from the team, which
results in a more productive retrospective.

112

In Agile Retrospectives: Making Good Teams Great, Esther Derby
and Diana Larsen identify several steps the facilitator should
follow when conducting a retrospective. The basic steps are:

1.	 Set the stage
2.	 Gather data
3.	 Generate insights
4.	 Decide what to do
5.	 Close the retrospective

Retrospectives should be fun and informative, and they don’t
always need to take a lot of time to put together. Often, just
having candy in the room to keep the blood sugar up, a white
board, markers, some sticky notes, and the ability to facilitate
a good conversation is enough to get the job done and make
it worthwhile for everyone.

For example, take a look at Figure 6: Retrospective results.

Conducting the
Retrospective

113

http://www.amazon.com/Agile-Retrospectives-Making-Teams-Great/dp/0977616649/ref=sr_1_1?ie=UTF8&qid=1286482047&sr=8-1

Figure 6: Retrospective results

114

While sticky notes are used in Figure 6, a white board could
easily be used to track the following:

1.	 What worked well in the sprint? List the processes, 	
	 interactions, and events that the team found helpful
	 and would like to continue.

2.	 What didn’t work well in the sprint? List the delays,
	 impediments, and broken processes that the team would
	 like to either improve or discontinue.

3.	 What actions can we take to improve our process
	 going forward? List the actions that volunteers from
	 the team (including the Scrum Master and Product Owner)
	 agree to see through to completion in future sprints.
	 In rare cases, actions may be picked up by the team
	 as a whole.

 DANGER! It’s not enough to only capture what worked well
and what didn’t. Actions for improvement must be captured
too. It’s the only way to make sure improvements are rolled into
future sprints and releases. Remember Agile teams don’t just
inspect—they also adapt!

115

Games can also be used to foster communication and help
identify issues during a retrospective, but they usually require
advanced planning. One such game is Speed Boat from
Innovation Games. (To learn more about playing Speed Boat,
visit http://innovationgames.com/speed-boat.)

In this game, the speed boat represents the project and the
items represent activities in the project. The placement
of the sticky notes also has meaning:

1.	 Above the waterline-these sticky notes represent wind,
	 which are items that are propelling the project forward.
	 In other words, they are the wind in the sails. (We realize
	 that speed boats don’t have sails, but go with it.)
	 The farther ahead of the sail, the stronger the item.

2.	 Below the waterline-these sticky notes represent anchors,
	 which are the impediments and other items holding the
	 project back. The deeper the anchor, the heavier the item.

Notice that actions have not been identified. While items
representing wind might lead to future actions, anchors
are generally where the team should focus their time. Lead
the team in a discussion about the specific actions that can
be generated from these anchors.

Plan to Play

116

http://innovationgames.com/speed-boat/

DANGER! Depending on your corporate culture, the word
“game” should be used cautiously. While these games produce
a useful outcome for the organization, the word “game” can
derail a well-intentioned and valid activity. Make sure senior
management and stakeholders understand the benefits of the
game beforehand, or use a different word to describe the activity.

Note: In the variation of Speed Boat played in the video, the
participants concerned themselves only with the anchors
to focus on the impediments that need to be fixed. Because
retrospectives should also capture the things that went well,
however, it is better to use the version in our example.

117

The team decides which improvements and actions they
will carry forward into future sprints based on the lessons
learned in the retrospective. It’s good to open subsequent
retrospectives with a review of how the actions from the
previous retrospective played out.

If actions require more than an hour of time to complete, the
team member who volunteered for the action should carry
it with them into sprint planning (which should be the next
day) and then add it to the task board in the next sprint.

DANGER! Don’t be discouraged if actions that were carried
forward from a previous retrospective aren’t successful. The
actions are often experiments to see if a certain process will
work better than an existing process, and all experiments are
not a success. A team may also identify an item as something
that was done well in one sprint, yet mark the same item
as something that was done poorly in a subsequent sprint.
It’s OK when this happens, but if the same item seesaws regularly,
dig a little deeper to figure out the cause of this fluctuation.

Carry It Forward

118

Again, retrospectives should be fun. Teams new to Agile will
often struggle in the beginning when it comes to participating
in retrospectives. The reasons for this struggle are varied,
but a few of the possible culprits include the following:

�� Fear of blaming. If a story wasn’t completed in the sprint
	 or something happened in a team member’s area that
	 delayed the rest of the team, there may be a fear that
	 the retrospective will result in blaming. To combat this,
	 make sure you focus the team’s attention on the group
	 goals and on continuous improvement as a team. Work
	 with team members who might cause problems before
	 the retrospective to understand their issues.

�� Fear of wasting time. If a team member thinks the
	 retrospective is a waste of time, try to find out why. Maybe 	
	 they didn’t benefit from the actions (or lack of actions)
	 coming out of the previous retrospective, or the team member 	
	 might be overloaded with other projects and is frustrated
	 at the thought of spending time looking backward.

Retrospective
Challenges

119

�� Fear of speaking up. Team members who are unsure
	 of what to say or are shy will refrain from speaking. Handle 	
	 this by introducing a speaking token that gets passed from
	 team member to team member, but make it OK for team 	
	 members to skip their turn if they have nothing to say.
	 If a team member is unusually quiet over several sprints,
	 speak with them individually to find out why.

DANGER! Don’t put quiet members on the spot in the
retrospective. Singling out quieter team members may
only intensify their unwillingness to talk, and may come off
as an attempt to lay blame. Instead, talk to the person outside
of the retrospective, one on one.

120

The sprint retrospective is held after the sprint review,
allowing the team to reflect on the entire sprint, including
the review. Here’s what we learned:

�� Even though the sprint review occurs on the last day,
	 the sprint is not closed until the team has held their
	 retrospective.

�� Retrospectives conducted at the end of every sprint
	 provide an opportunity for the team to reconnect and
	 improve the way the project is delivered.

�� The retrospective is the last in a long line of inspections
	 that occur during a sprint, and it provides the best
	 opportunity to identify ways to adapt the Agile process
	 going forward.

�� At a minimum, the Product Owner, development team,
	 and Scrum Master should participate in the retrospective.
	 Supporting teams and other stakeholders may also
	 be included.

�� Retrospectives are usually four hours long for a 30-day
	 sprint, but should be tailored to the needs of the project
	 and team.

�� The Scrum Master typically facilitates the retrospective
	 in the beginning, but other team members are welcome
	 to take on the role of facilitator.

�� Games can help make the retrospective meeting be more
	 productive, interactive, and fun.

The Sprint Retrospective
in a Nutshell

121

122

Measuring Up
We’ve covered the basics of what it takes to become more
Agile. But, we haven’t talked about metrics yet.

Metrics are important for all projects, no matter how they
are delivered. In addition to helping you measure and
communicate team progress, which is especially important
in Agile development, metrics also provide insight into areas
for improvement.

On this stop of the Agile Expedition, we’ll lay the foundation
for a good set of metrics for measuring progress on an Agile
project.

DANGER! The metrics needed over the life of a project may
change in response to the needs of the project. Do not start
executing the project until the team understands the initial
metrics required by stakeholders.

123

Be Prepared
DANGER! There is no one-size-fits-all approach to metrics, and
the use of metrics will vary from project to project. Be aware
that the metrics we cover do not make up a comprehensive list.

Before your Agile team starts executing their first sprint,
it is important to understand what metrics will be collected,
why they are being collected, and who will be reading the
resulting reports.

Understanding the data and your stakeholders’ needs will
help you provide clarity when reporting your team’s status,
especially to senior management. Also, depending on the
project, the person responsible for generating the reports
(the project manager, Scrum Master, etc.) may be required
to provide different views for different stakeholders.
A software tool can help by automatically pulling this
information together into the various views. 124

The Burn Down Chart
Arguably, the most useful report for tracking progress
on an Agile project is the burn down chart. Burn down charts
track work (points, ideal days, hours, etc.) remaining against
either sprints in the project or days in a sprint. So, burn downs
can be tracked at the project and sprint level.

At the project level, the X-axis represents the number of sprints
and the Y-axis represents the work remaining (which can
be represented as story points, ideal days, or whatever the
team chooses).

Projects involve two types of metrics: hard and soft. Hard
metrics address the mechanics of Agile projects and are
reported in the burn down chart, the burn up chart, the defect
report, and build failures.

Hard Metrics

Figure 7: Project-level burn down chart using story points

125

At the sprint level, the X-axis represents the number of days
in the sprint and the Y-axis represents the remaining effort
(in hours) in the sprint.

At the project level (see Figure 7), burn down charts are good
for showing work remaining in the project, determining
team velocity, and estimating how many sprints it will take
to complete the project. Because average velocity can only
be measured after a few sprints, it is important not to set
unrealistic expectations for the team at the beginning of the
project. After the team has established an average velocity,
it can be used to estimate how many sprints it will take to finish
the project’s current backlog of work.

Figure 8: Sprint-level burn down chart using hours

126

Example: In Figure 7, the team’s velocity is around 41 story points per sprint. Assuming all else is equal and the number of points does not change, the team will finish all 260 story points in about seven sprints.

At the sprint level (see Figure 8), burn down charts are good for showing work remaining in the sprint. Work is normally shown as hours remaining. Sprint burn downs are a good way to keep a pulse on the sprint progress at a daily level.

DANGER! As illustrated in Figures 7 and 8, hours remaining
will not trend smoothly down to zero. This is the nature
of burn downs. As work is added and removed, the trend
line will roller-coaster to the bottom. The team’s feedback
during the daily Scrum should be the primary indicator
of progress. Always trust what the team says.

127

The weakness of the burn down chart is that it doesn’t always
show the amount of work completed in the sprint or the change
in the amount of work in the project. Someone looking only at
a burn down chart may not see how much work was completed
or how much work was added or removed to the project.
Without this understanding, stakeholders may get confused
and unnecessarily alarmed, as illustrated in the example below.

Example: In Figure 8, when comparing Sprints 4, 5, and
6, it appears the team did only about 30 points worth of work
in Sprint 4 (measured between Sprints 4 and 5). In Sprint
5, it appears that no work was done, but work was added
(measured between Sprints 5 and 6). This roller coaster trend
continues through the project’s remaining sprints. If the
project stakeholders saw only this burn down chart and no
other reports, they might worry that the project was slowing
down without understanding the reasons why.

DANGER! If stakeholders want to know when the team will
complete the work in the project backlog before team velocity
is known, the person who is reporting the status must set the
appropriate expectations by helping management understand
the importance of empirically deriving future projections.
Stress the importance of projecting the number of story
points the team can deliver in future sprints by looking at what
it has delivered in past sprints. If you must, work with the team
to provide a best case/worst case range, but do not give
an exact date or number of sprints.

128

The Burn Up Chart
Burn up charts are typically shown at the project level using
story points. In a burn up chart, the X-axis represents the
sprint while the Y-axis represents the story points completed
and the total story points in the project.

Burn up charts are good for showing the total amount
of work (usually in story points) in the project, the number
of story points completed in each sprint, and for
determining team velocity, which can be used to estimate
the number of sprints it will take to finish the project’s
current backlog of work.

Figure 9: A burn up chart with story points completed and total story points in project

129

Example: In Figure 9, the ‘Story Points in Project’ line represents the total story points in the project. Any time user stories are added or removed from the project, they are shown in the burn up chart. The ‘Story Points Complete’ line shows the completed user stories. The project finishes where the two lines intersect.

The weakness of the burn up chart is that the number of story points remaining is not immediately evident. To get story points remaining, you must subtract the most recent number in the ‘Story Points Complete’ line from the most recent number in the ‘Story Points in Project’ line.

Example: In Figure 9, if the team subtracted 33 from 260

in Sprint 1, they would get 227 story points remaining

in the project.

130

DANGER! While story points remaining in the project can
be calculated using a burn up, consider your audience
when reporting this information. Managers will generally
want the numbers presented to them in a more simplified
format. It’s often better to provide both the burn up and burn
down charts to give them the full project picture. Consider
aggregating the data from both charts into a single format
that is easily scannable.

131

So far, we have talked about measuring project and sprint
progress, which is good for figuring out how fast you’re
delivering. But burn up and burn down charts do not indicate
product quality. One of the benefits of adopting Agile
practices is building better quality into products. As a result,
stakeholders may want to know how many defects were
discovered in the current sprint and how the number and type
of defects compares with previous sprints. Software testing
tools can assist with generating defect reports on the fly.

If your organization is transitioning to Agile methods from
Waterfall, and you need to show proof of the benefits, it would
be useful to compare the total defect rate for a product over
several projects.

Example: Were fewer defects found in this year’s Agile project than last year’s Waterfall project? Breaking it down further can yield defect comparisons between categories (e.g,. Critical, Average, Minor) and across different types of testing (e.g., Unit, Integration, User Acceptance).

The Defect Report

132

Using build failures as a metric can help teams understand
how many builds they are breaking within a sprint and across
sprints. Build failures are a reflection of the code quality going
into the build and can help the team make decisions regarding
their engineering practices. Also, when done in combination
with continuous integration, understanding build failures can
help the team identify who is submitting buggy code to the
repository.

Build Failures

133

You now know more about the hard metrics that address
the mechanics of Agile projects. What about soft
metrics, that track things like customer satisfaction and
team morale? Too often, soft metrics are not reported
to management. This is unfortunate because half of the
Agile Manifesto emphasizes the importance of people.
Specifically, it emphasizes the values of “Individuals
and interactions over comprehensive documentation” and
“Customer collaboration over contract negotiation.”

Customer satisfaction simply measures how satisfied the
customer is with the product. This is not unique to Agile, but
it is highly emphasized on Agile projects. Customer satisfaction
is emphasized so highly, in fact, that the product owner (who
represents the customer) is accessible to the development
team daily, throughout the entire project. While the product
owner is an important reflection of the overall happiness
of the customer, teams should also reach out to end users
to assess their happiness with the product. The Sprint Review
is an excellent time to measure customer satisfaction.

Soft Metrics Customer Satisfaction

134

http://www.agilemanifesto.org
http://downloads.seapine.com/pub/ebooks/AgileSprintReview_eBook.pdf

While customer satisfaction is important, equally important
is the satisfaction of the team. This includes the Product Owner,
Scrum Master, and development team. An Agile team will not
perform optimally if they are not happy, and management
should be made aware of morale issues so they can step in and
help if needed.

There are many ways to uncover team morale and a few are
outlined in Agile Retrospectives: Making Good Teams Great
by Esther Derby and Diana Larson. One way to determine
morale is through the use of a morale thermometer, which
is a chart that shows how the team is feeling at a moment
in time. The retrospective is a good time to take the team’s
morale temperature.

Team Morale

Figure 10: Morale thermometer: red means morale is low, yellow means

there’s some dissatisfaction, and green means morale is high

135

http://www.amazon.com/Agile-Retrospectives-Making-Teams-Great/dp/0977616649/ref=sr_1_1?ie=UTF8&qid=1286482047&sr=8-1

In Figure 10, the team’s morale is shown in varying levels.
The diagram is counterintuitive because the higher the
temperature, the higher the morale. In other words, you want
a high team temperature. The numbers along the thermometer
indicate the number of team members who voted for each
color.

If a sprint resulted in extremely low morale, the team will want
to spend some time in the retrospective exploring what caused
so much dissatisfaction.

DANGER! If team members aren’t comfortable sharing their
feelings, make voting anonymous to ensure an accurate
temperature reading. While it ’s always good to share
responsibilities in an Agile project, this is one time where
it might make sense for one person (possibly even someone
from outside the team) to take the temperature.

136

What conversation about metrics would be complete without
touching on the metrics that don’t matter?

As organizations transition from Waterfall to Agile methods
or try to become more Agile, many of the old metrics should
be left behind.

Percent complete is the percentage of overall work for
a feature or task that has been done. For example, if a task
is estimated to take eight hours and has four hours remaining,
then the task is 50 percent complete. Fairly obvious, right?

Metrics that Don’t Matter

Percent Complete

In less creative industries, percent complete might accurately
reflect the amount of effort needed to complete a task,
but this is not the case in the software industry. In fact, the last
20 percent is often the most difficult part or requires the
most effort.

For Agile projects, only two percentages matter: zero
and 100 percent. A feature or task is either done or not.
So, if someone says they are 80 percent done with a task,
an Agile team member will translate that into zero percent
done. Reporting the percent complete puts undo overhead
on the team and takes focus away from what really matters,
which is getting to “done”.

137

http://downloads.seapine.com/pub/ebooks/AgileDoneness_eBook.pdf

DANGER! Management will often want to see percent
complete because “that’s the way we’ve always done it.” In this
case, your best bet is to educate management on the benefits
of not tracking percent complete. Learn how to get away
from percent complete: http://blogs.seapine.com/2010/11/
how-to-get-away-from-percent-complete/.

Tracking Actual Feature 	
or Task Hours
Most organizations have a time tracking tool that team
members use when they are working on multiple projects.
For Agile projects, tracking actual hours at the project level
makes sense when team members are on multiple projects
that are under multiple cost centers. This goes for both internal
and external projects.

On the other hand, for internal projects, tracking actual hours
at the feature and task level is a wasted activity. Many project
and people managers wrongly believe that forcing a team
to track actual hours at the feature or task level will make the
team better estimators. With software development, however,
the level of accuracy that can be attained with estimating
is limited at best because two features are rarely exactly alike.

138

http://blogs.seapine.com/2010/11/how-to-get-away-from-percent-complete/
http://blogs.seapine.com/2010/11/how-to-get-away-from-percent-complete/

Agile team members also work on multiple tasks (including
email, meetings, etc.) throughout the day. When actual
hours are recorded, they are really more like estimated
actual hours. As with percent complete, tracking actual hours
at the feature and task level puts undo overhead on the team.

If your organization is developing an application for
an external customer or an external vendor is developing
an application for your organization, details around tracking
actual hours will come down to the specifics of the contract.
If the payment is received on a feature-by-feature basis, then
it will be necessary to track hours at the feature level. This
should be the exception and not the rule.

139

Here’s a quick checklist of commonly used metrics and the ways to obtain them.

Metrics Checklist

140

Metrics are important to all projects, Agile or not. Here’s
what we learned:

�� Before starting an Agile project, know what metrics you
	 need to collect and who will be reviewing them.

�� Burn down charts track information at the project level 	
	 and at the sprint level.

�� Burn downs charts are good for determining team
	 velocity and projecting how many sprints it will take
	 to complete the project.

�� Burn up charts are typically shown at the project level

	 using story points.

�� Burn up charts show the work that has been completed
	 and changes in the workload.

�� The defect report shows the number of defects found
	 in the entire project.

�� The defect report is useful for revealing whether the
	 number of defects is increasing or decreasing compared
	 with previous sprints, releases, or projects.

�� Customer satisfaction and team morale are also important
	 metrics to track for Agile projects.

�� Tracking percent complete and actual feature/task hours 	
	 are not useful metrics.

Metrics
in a Nutshell

141

142

Don’t “Do” Agile
The method we have explored the most during the
Agile Expedition is Scrum. On this stop, you’ll learn about
some of the other Agile methodologies and engineering
practices that support Agile processes, to help you gain
a better understanding of which methodologies and practices
provide the most benefit for your organization and projects.

If you have ever talked shop with a fellow software developer
about methods, you might have heard something like,
“We don’t do Agile.” Well, of course not! Agile is a set
of values, not a process or method. Organizations do not
do Agile—they either are Agile, or they aren’t.

Every organization takes a different approach to being Agile
and, as a result, multiple methods have emerged under
the Agile umbrella. However, they all stay true to the
Agile Manifesto.

143

http://agilemanifesto.org/

Agile Delivery
Methodologies

DANGER! This is not an exhaustive discussion of Agile delivery
methodologies. It should go without saying that you’ll need
to do more research to discover the best fit for your situation.

Agile delivery methodologies are defined processes
for delivering software in an agile manner. They all value
close collaboration with the customer and incrementally
delivering quality software based on prioritized business
value and in the shortest timeframe possible.

144

Scrum, which was formalized by Ken Schwaber and Jeff
Sutherland in the mid 1990s, is one of the more popular
Agile delivery methods. During this Agile Expedition,
we have referred to many Scrum terms, including sprint,
Product Owner, and Scrum Master. One of Scrum’s strengths
is that it is a well-defined and extensively documented
delivery methodology. Because of that, we won’t define
Scrum in detail here. Instead, check out the recommended
resources to learn more.

Scrum

Recommended Resources
�� Agile Project Management with Scrum by Ken Schwaber
�� Agile Software Development with Scrum by Ken Schwaber 		

	 and Mike Beedle�� Scrum.org (www.scrum.org)�� Scrum Alliance (www.scrumalliance.org)

145

www.scrum.org
www.scrumalliance.org

These engineering practices also provide a perfect
complement to Scrum’s more widely known and adopted
delivery methods.

XP operates on the following values:

1.	 Simplicity
2.	 Communication
3.	 Feedback
4.	 Respect
5.	 Courage

Extreme Programming (XP) was created by Kent Beck and
is similar to Scrum in that it emphasizes short, iterative, and
incremental development cycles, short feedback loops, close
customer collaboration, and work prioritized by highest
business value.

XP puts an extra emphasis on engineering practices that help
improve code or product quality, such as:

�� Test-Driven Development

�� Pair Programming

�� Continuous Integration

�� Refactoring

Extreme Programming

Recommended Resources

�� Extreme Programming Explained: Embrace Change

	 by Kent Beck and Cynthia Andres

�� Planning Extreme Programming by Kent Beck

	 and Martin Fowler

146

Feature-Driven Development (FDD) was created by Jeff
De Luca in the late 1990s and, like XP and Scrum, is focused
on delivering customer value by identifying and delivering the
features with the highest business value first, in an iterative
and incremental fashion. FDD is a model-driven Agile process
that puts emphasis on first identifying the problem domain
using Unified Modeling Language (UML®), then digging into
feature development on an iterative and incremental basis.
Because FDD is model driven, it has additional roles such
as Class Owner to support the modeling function.

Feature-Driven
Development

FDD emphasizes the following activities as part of its process:

1.	 Develop an overall model
2.	 Build a features list
3.	 Plan by feature
4.	 Design by feature
5.	 Build by feature

147

“At Bayt.com, we had opted to use FDD. While I believe
that SCRUM, as all other agile methodologies is excellent
in supporting human-oriented software development
environment, I continue to believe that it lacks well defined
control points (milestones) that are required to track the
progress of features implementation. It is clearly focused more
on the Project Management side rather than the Software
Development side”

- Ala’ Abuhijleh, Development Manager at Bayt.com

Recommended Resources

�� Java Modeling in Color with UML by Peter Coad, 	 Erick Lefebvre, and Jeff De Luca�� A Practical Guide to Feature Driven Development 	 by Stephen Palmer and Mac Felsing�� Feature Driven Development 	 (www.featuredrivendevelopment.com/)

148

http://www.bayt.com/
www.scrumalliance.org
www.scrumalliance.org

Dynamic Systems
Development Method
Dynamic Systems Development Method (DSDM) was
created and is formally maintained by the DSDM Consortium
and, like other Agile processes, focuses on close customer
collaboration and delivering the features with the highest
business value first, in an iterative and incremental fashion.

Like FDD, DSDM has more roles than Scrum or XP. However,
DSDM is unique in that it identifies a pre-project and
post-project phase. Scrum, XP, and FDD all assume project
funding has been approved and do not provide guidance for
pre- or post-project work. Project managers will appreciate this
extra guidance because all projects must go through the initial
funding process, as well as fulfill their service level agreements
(SLAs) in the post-project period.

 The three phases of DSDM are:

1.	 Pre-project
2.	 The project lifecycle
3.	 Post-project

The project lifecycle phase includes the following stages:

1.	 Feasibility
2.	 Functional model iteration
3.	 Design and build iteration
4.	 Implementation

149

Figure 13: DSDM Project Lifecycle Stages

Recommended Resources
�� DSDM: Business Focused Development 	 by Jennifer Stapleton�� DSDM Consortium (www.dsdm.org)

150

www.dsdm.org

Kanban, which roughly means “signboard” in Japanese,
is a manufacturing technique created by Taichi Ohno and
popularized by Toyota more than 50 years ago. Kanban was
one of the earliest forms of lean manufacturing and, in the past
10 years or so, “lean” thinking has made its way into software
development in the form of Agile methods.

Kanban uses what is known as “pull” (or demand-generated
supply) to meet demand rather than a “push” method, which
relies on demand forecasting. Tolerances are set for work in
process (WIP), so there is never more WIP in the queue than the
team can handle and what is needed to meet demand. Kanban
systems are useful for organizations where short timeboxes
associated with other Agile methodologies are not required.

To learn more, check out this Kanban by Example blog post:
http://blogs.seapine.com/2011/01/kanban-by-example/.

Kanban

Recommended Resources

�� Implementing Lean Software Development:

	 From Concept to Cash by Mary and

	 Tom Poppendieck

�� Kanban by David Anderson

�� Lean Software Development: An Agile Toolkit

	 by Mary and Tom Poppendieck

�� Scrumban by Corey Ladas

�� The Principles of Product Development Flow:

	 Second Generation Lean Product Development

	 by Donald G. Reinertsen

151

http://blogs.seapine.com/?p=6646
http://blogs.seapine.com/2011/01/kanban-by-example/

Engineering practices involve activities that complement Agile
delivery methods with best practices generally associated with
Agile projects.

All of these practices should reduce the business and technical
risk associated with software development, which includes the
cost of development and maintenance. These practices can
be used individually or all at the same time.

DANGER! It is important to implement at least one of these
practices to lessen the likelihood of what Ward Cunningham,
one of the pioneers of XP, terms technical debt, which
is a decrease in code maintainability and an increase
in development cost over time due to the shipment
of “not-quite-right code.”

Engineering
Practices

152

Test-Driven Development (TDD) is the practice of writing
a unit test before writing any code. This can be done relatively
quickly, with the developer writing the test, then writing the
code, and then running the test in small increments. TDD
ensures the code is consistently refactored for a better design.

TDD has the following distinct benefits:

�� It contributes to better overall system design by reducing
	 code duplication and other anomalies.

�� It forces programmers to think about end results first,
	 which increases the likelihood that the code will meet
	 customer needs.

Test-Driven
Development

�� It increases test coverage for the system under development,
	 which uncovers more defects and reduces what Kent Beck,
	 author of Test Driven Development by Example, calls
	 defect density.

In his book, Beck identifies the following TDD mantra:

1.	 Red (Fail) – First, write a little test that doesn’t work,
	 and perhaps doesn’t even compile.
2.	 Green (Pass) – Make the test work quickly, committing
	 whatever sins necessary in the process.
3.	 Refactor – Eliminate all of the duplication created in merely
	 getting the test to work.

153

Pair Programming is the practice of pairing two developers
to work on one module of code. The typical setup is two
developers at one workstation. One developer writes the
code, while the other watches and thinks further how to break
down the problem and reengineer the solution. When one
developer reaches a block, the keyboard is passed to the other.
This passing back and forth happens as often as is necessary.

Pair programming has the following distinct benefits:

�� It reduces the chance of defects in code written for tough
	 software engineering problems.

�� It allows one developer to think more abstractly about
	 the solution while the other writes the code, leading
	 to better design.

Pair Programming
�� It shares the knowledge of the code between two

	 developers, decreasing the number of modular experts
	 and increasing the number of generalists, which reduces
	 bottlenecking among team members.

�� It increases the chances that team members will develop
	 common and improved programming methods.

DANGER! Pair programming is not an all-or-nothing
proposition. Your team may chose to pair only one day a week,
or only on the problems they think are the most difficult. Teams
should have the flexibility to pair when they think it’s necessary
to build the best product for the customer and create the most
maintainable codebase.

154

Continuous Integration is the practice of integrating code
daily, usually with automation, and running automated tests
against the code. Developers check their tested unit code into
the code repository each day. Based on a differing number
of methods (e.g., polling, specific times, etc.), the build server
integrates all the code and runs automated new and regression
tests against the build. The development team is notified
of build failures and successes through various methods, such
as email and RSS feed.

Continuous
Integration

Continuous integration has the following distinct benefits:

�� It allows the team to track down problem code faster,
	 in the event the build breaks. As a result, code quality
	 is improved.

�� It provides feedback to the development team almost
	 immediately, depending on when the build is run.

�� If desired, it allows successful builds to be deployed
	 to a production environment immediately.

155

Refactoring is the practice of taking small chunks of code
(i.e., at the unit level) and frequently rebuilding it so that
it is as simple as possible, yet still delivers the expected value.
Martin Fowler popularized this practice in his book Refactoring:
Improving the Design of Existing Code.

Refactoring
Refactoring has the following distinct benefits:

�� It maintains the flexibility of the architecture, allowing
	 it to evolve in a structured manner over the entire life
	 of the product, which usually translates into lower
	 maintenance costs.

�� It helps software engineers understand their code
	 better, which leads to better design.

�� It helps reduce unnecessary and duplicate code.

156

We’ve come to the end of Seapine’s Agile Expedition.
On this journey through the heart of Agile, we’ve taken you
from building a backlog to conducting a sprint retrospective
and beyond.

Although we’ve covered the basics, we have by no means
fully explored the territory. Our goal was to give you a better
understanding of Agile development, a few of the common
pitfalls to avoid, and how it can benefit your organization and
your customers.

When you’re ready for a more in-depth exploration, Seapine
offers a range of services and solutions that can help make
your business more agile. Our Agile Services team provides
coaching, assessment, training, and delivery solutions. To learn
more, please visit www.seapine.com/agileservices.html.

That’s All, Folks!

157

www.seapine.com/agileservices.html

Jeff Amfahr, Director of Product Management, is responsible
for establishing the strategic direction of Seapine products.
Jeff has more than 20 years of experience designing and
delivering software products for a variety of organizations,
from small start-ups to large multinational companies.

Alan Bustamante, Senior Agile Consultant, leads Seapine
Software’s Agile Services practice. Alan has been in the
software business for over 10 years, four of which have been
working with Agile teams. He is passionate about building
better software through the use of Agile methods, and is very
active in the Agile community. Alan holds multiple industry
certifications including Project Management Professional
(PMP), Certified Scrum Professional (CSP), and IBM Rational
Unified Process (RUP) Solution Designer.

Paula Rome, Senior TestTrack Product Manager, focuses
on Seapine Software’s TestTrack product family. For over
20 years, Paula has been creating quality-critical software
systems for a wide range of industries spanning from
healthcare to satellites. She has worked with large and small
teams and a variety of methodologies and cultures, which
has given her an appreciation for practical approaches
to developing software products that make customers happy.

About the Authors

158

	Exploring Agile: The Seapine Agile Expedition
	Welcome to the Seapine Agile Expedition!
	Backlogs: The Foundation to Your Agile Success
	The Art and Science of Reliable Agile Estimating
	Mapping the Journey: Release and Sprint Planning
	Marching Along: Daily Activities
	Automated Testing and Agile
	Are We There Yet? Doneness Criteria
	It's Showtime: The Sprint Review
	Look Back in Agile: The Sprint Retrospective
	Measuring Up: Progress Metrics
	Mixing Methodologies

